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Abstract. We describe a discrete-time, stochastic population model with density depend-
ence, environmental-type process noise, and lognormal observation or sampling error. The
model, a stochastic version of the Gompertz model, can be transformed into a linear Gaussian
state-space model (Kalman filter) for convenient fitting to time series data. The model has a
multivariate normal likelihood function and is simple enough for a variety of uses ranging
from theoretical study of parameter estimation issues to routine data analyses in population
monitoring. A special case of the model is the discrete-time, stochastic exponential growth
model (density independence) with environmental-type process error and lognormal
observation error.
We describe two methods for estimating parameters in the Gompertz state-space model, and

we compare the statistical qualities of the methods with computer simulations. The methods
are maximum likelihood based on observations and restricted maximum likelihood based on
first differences. Both offer adequate statistical properties. Because the likelihood function is
identical to a repeated-measures analysis of variance model with a random time effect,
parameter estimates can be calculated using PROC MIXED of SAS.
We use the model to analyze a data set from the Breeding Bird Survey. The fitted model

suggests that over 70% of the noise in the population’s growth rate is due to observation error.
The model describes the autocovariance properties of the data especially well.
While observation error and process noise variance parameters can both be estimated from

one time series, multimodal likelihood functions can and do occur. For data arising from the
model, the statistically consistent parameter estimates do not necessarily correspond to the
global maximum in the likelihood function. Maximization, simulation, and bootstrapping
programs must accommodate the phenomenon of multimodal likelihood functions to produce
statistically valid results.

Key words: Breeding Bird Survey; environmental noise; Gompertz growth model; Kalman filter;
measurement error; multimodal likelihood; observation error; process noise; sampling error; state-space
model; stationary distribution; stochastic population model.

INTRODUCTION

The use of mathematical population models as the

basis for analysis of time series population abundances

has been a productive and useful area of research in the

past decade (Dennis et al. 1991, Dennis and Taper 1994,

Berryman 1999, Turchin 2003). The basic approach

converts the deterministic models of ecology textbooks

into statistical analysis tools by incorporating into the

models terms representing the ubiquitous stochastic

forces affecting populations (Dennis et al. 1995, Hilborn

and Mangel 1997, Ives et al. 2003, Turchin 2003).

Ecologists now widely acknowledge that multiple

stochastic forces, including demographic and environ-

mental noise, are inherent in population fluctuations,

even in the laboratory. This ‘‘process noise’’ exists

independently of the error inherent in the observation or

sampling methods by which population abundances are

estimated, which we term ‘‘observation error.’’ While

models with process noise alone or observation error

alone are relatively easy to apply, analyzing populations

affected by both process noise and observation error has

remained a difficult computational and statistical

challenge (Shenk et al. 1998).

The problem of estimating both observation error and

process noise in population ecology is starting to yield to

progress in statistical methods. ‘‘State-space’’ models for

analyzing time series of population abundances offer

possibilities of jointly estimating the amount of obser-

vation error along with the amount of process noise (De

Valpine 2002, De Valpine and Hastings 2002, Clark and

Bjørnstad 2004). A state-space model has two compo-

nents: a stochastic model for an unobserved variable (or

group of variables), and a stochastic model for an
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observed variable (or group of variables), the latter

model usually formulated as a function of the unob-

served variable and measurement or sampling error.

Two essential difficulties have hindered the wider use of

these approaches.

First, the combination of process noise and observa-

tion error produces significant computational difficul-

ties. With process noise or observation error alone, the

statistical dependence structure of the observations can

be described with relatively simple mathematical for-

mulas that permit easy computing. However, the

combination of process noise and observation error

alters the dependence structure, so that each observation

is statistically related to all the previous observations in

the time series in ways that defy representation with

simple formulas. Extensive numerical simulation and

numerical integration is required for conducting stat-

istical inferences; the task of just fitting a model can

become a major research project.

Second, the information contained in the time series

data for estimating the magnitudes of both the process

noise and the observation error simultaneously can be

elusive. Parameters for both types of variability can have

estimates that are highly related to each other, as

manifested through ridge-shaped likelihood functions

and large estimation intervals.

Even so, state-space models have been proposed and

applied in ecological work. De Valpine and Hastings

(2002) developed density-dependent population models

in which the underlying population process had either a

stochastic Moran-Ricker or a stochastic Beverton-Holt

form, and the observed time series was the underlying

process plus normal observation error. They used

Kitagawa’s (1987) discretization algorithm for calculat-

ing the integrals in the likelihood function, and they

tested maximum likelihood (ML) estimation with

simulations. Numerous other state-space population

models have been implemented, especially in the fisheries

literature. Many of the applications have used linear

difference equations with normal process noise for the

population, sometimes with multiple state variables to

accommodate age structure (for example, Sullivan 1992,

Reed and Simons 1996). The observation error in these

density-independent state-space models typically is also

taken to be normally distributed. Conveniently, the

likelihood function for fitting the linear models with

normal error to data can be computed readily with a set

of recursion equations known as the Kalman filter

(Harvey 1993, Schnute 1994). For nonlinear density-

dependent cases, Schnute (1994) noted the possibility of

using the ‘‘extended Kalman filter’’ involving linear

approximation methods, but Kitagawa’s (1987) algo-

rithm was partly motivated by the knowledge in

statistics that the extended Kalman filter approach

frequently does not work well. A useful review of the

nonlinear approaches was compiled by De Valpine

(2002). Staudenmayer and Buonaccorsi (2005) tackled

the inherently nonlinear problem of heteroskedastic

observation error in otherwise linear time state-space

models; their paper provides a current entry to the

statistics literature on state-space models.

The numerical challenges of nonlinear state-space

population models have inspired Bayesian approaches.

Millar and Meyer (2000a) use the Bayesian framework

to implement state-space models for fisheries stocks

based on the nonlinear Moran-Ricker or Beverton-Holt

forms. In other papers, they develop linear age-

structured models and explain use of the BUGS

(Bayesian inference using Gibbs sampling) software

(Meyer and Millar 1999a, b, Millar and Meyer 2000b).

More recently, Buckland et al. (2004) constructed

detailed state-space models with multiple state variables,

and Newman et al. (2006) implemented such a model for

fisheries data. Clark and Bjørnstad (2004) surveyed

different types of population variability and observa-

tional errors that can be accommodated in the Bayesian

state-space framework.

A special case of the linear state-space models is the

stochastic model studied by Holmes (2001; see also

Holmes and Fagan 2002, Holmes 2004). The model

consists of discrete-time exponential growth with pro-

cess noise and observation error and represents an

extension of the diffusion process model used in

conservation biology (Dennis et al. 1991). Holmes

proposed a regression method for estimating model

parameters; Lindley (2003) observed that ML estimates

for the model could be computed with the Kalman filter.

Staples et al. (2004) subsequently demonstrated that

improved estimation for the model can be attained with

restricted maximum likelihood (REML) estimates based

on second differences of the time series data; the model

for the first differences, it turns out, can be written as a

standard analysis of variance model with mixed effects.

A promising route for combining the computational

convenience of linear state-space models with density

dependence is to formulate a linear autoregressive model

on the logarithmic scale (Myers and Cadigan 1993a, b,

Fromentin et al. 2001, Ives et al. 2003). When process

noise is added on the logarithmic scale, a model of

environmental variability is produced (Dennis et al.

1995). Myers and Cadigan (1993a, b) and Fromentin et

al. (2001) used multivariate autoregressive models to

study survival in fisheries populations, while Solow and

Sherman (1997) and Ives et al. (2003) used such models

as the basis for estimating interaction strengths and

stability measures in time series data of interacting

species. Significantly, a univariate version of these

models is a Gompertz-type model of density-dependent

population growth.

Our goal in this paper is to offer a statistical approach

for jointly estimating density dependence, process error,

and observation error that (1) is relatively easy for

ecologists to use and (2) is applicable in many

population systems. To that end, we study a univariate,

discrete-time, stochastic model for analyzing time series

abundances of a single population. The model contains
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density dependence in the form of a Gompertz- type

population growth function. The model represents

environmental stochasticity as lognormal process noise.

As well, the model contains lognormal observation

error. While other state-space models can be formulated

to contain more realism, the representations of density

dependence, process noise, and observation error in the

model serve as a minimal set for adequately describing

time series abundances in a variety of ecological settings.

Furthermore, a practical threshold of usefulness of a

statistical method tends to be the availability of user-

friendly software for conducting the calculations.

Because the likelihood function for the model we present

is identical to that of a repeated measures analysis of

variance with a random time effect, parameter estimates

can be calculated with software packages for mixed-

effect models, such as PROC MIXED in SAS. We

demonstrate with simulations that the magnitudes of

process variability and sampling variability, along with

the strength of density dependence, can be sorted out

when fitting the model to a single time series of

estimated population abundances.

We begin by describing the model, its variants and

special cases, and its main statistical properties. The

resulting likelihood functions for various types of time

series observations, including differenced observations,

are presented. We then develop ML and REML

approaches to parameter estimation for the model.

Simulations of the ML and REML estimation methods

follow, and analysis of a data set from the Breeding Bird

Survey illustrates an application of the model. We clarify

the advantages and limitations of the model, in

comparison to other approaches, in a discussion section.

In Appendix A, the equations and statistical results

presented in the paper are derived using concepts from

elementary mathematical statistics. Appendix B contains

an SAS computer program for fitting the model to data,

along with annotated output.

THE MODEL AND ITS PROPERTIES

Model form and notation

The underlying model we use for population abun-

dance is a discrete time, stochastic Gompertz model. Let

Nt denote population abundance at time t. The

abundance model (the process model) is

Nt ¼ Nt�1 expðaþ b ln Nt�1 þ EtÞ ð1Þ

where a and b are constants, and Et (the ‘‘process noise’’)

has a normal distribution with mean 0 and variance r2

(we write Et ; N (0, r2)). The random variables E1,

E2, . . . are assumed to be uncorrelated. The model has a

long history in density-dependence modeling (see Red-

dingius 1971, Pollard et al. 1987, Dennis and Taper

1994). A frequently seen alternative is a stochastic

version of the Moran-Ricker model (Dennis and Taper

1994), which uses Nt�1 instead of ln Nt�1 in the ex-

ponential function; in comparative data analysis studies,

the Gompertz model has performed as well as the

Moran-Ricker (e.g., Rotella et al. 1996). In a recent

extensive analysis of 1780 time series of mammals, birds,

fish, and insects using a flexible growth function, the

most common shape of the per-unit abundance growth

rate, as a function of population abundance, was

strongly concave (up), similar to the shape of the

Gompertz (Sibly et al. 2005). On the logarithmic scale,

the Gompertz abundance model is a linear, autoregres-

sive time series model of order 1 [AR(1) process]:

Xt ¼ Xt�1 þ aþ bXt�1 þ Et ¼ aþ cXt�1 þ Et ð2Þ

where Xt¼ ln Nt and c ¼ b þ 1.

Statistical properties of the stochastic Gompertz are

well known. The probability distribution of Xt is a

normal distribution with mean and variance that change

as functions of time. If �1 , c , 1, the probability

distribution of Xt eventually approaches a time-inde-

pendent stationary distribution that is a normal

distribution with a mean of a/(1 � c) and a variance of

r2/(1� c2). The stationary distribution is the stochastic

version of an equilibrium in the deterministic model, and

is an important statistical manifestation of density

dependence in the population growth model.

Real population abundances are rarely known ex-

actly. Therefore, we assume that the sampling procedure

used in monitoring the population yields an estimate, Yt,

of the logarithmic population abundance Xt. The

observation error in Yt is assumed to be adequately

described by a normal distribution with mean 0 and

variance s2:

Yt ¼ Xt þ Ft ð3Þ

where Ft ; N (0, s2) and F1, F2, . . . are uncorrelated. The

model describes sampling procedures that generate, on

the original scale, multiplicative lognormal observation

errors in the estimates of population abundances; the

model is expected to describe a variety of sampling

protocols fairly well (we expand this point further in

Discussion).

The model as constituted by Eqs. 2 and 3 is in the

form of a linear, normal ‘‘state-space model,’’ for which

there is a large statistical literature (e.g., Harvey 1993).

We term Eqs. 2 and 3 the Gompertz state-space (GSS)

model. Note that the underlying Gompertz population

model (Eq. 1) is not linear, but is a sigmoid growth

curve, and that the sampling portion of the model

describes lognormal error that can be realistically

expected in many ecological sampling protocols. The

GSS model provides the likelihood function for con-

necting time series of estimated population abundances

with the unknown parameters a, c, r2, and s2.

Likelihood function

The data are a time series of estimated log population

abundances, denoted y0, y1, . . ., yq. These observations

are assumed to constitute a realization of the stochastic

process Yt defined by Eqs. 2 and 3.
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One question arises immediately: do the data contain

enough information to estimate both the process

variance (r2) and sampling variance (s2)? Some insight

into the question can be gained by rewriting Eqs. 2 and 3

in terms of Yt alone. Substituting Eq. 2 for Xt in Eq. 3,

and noting that Xt�1 ¼ Yt�1 � Ft�1, we find that

Yt ¼ aþ cYt�1 þ ðEt þ Ft � cFt�1Þ: ð4Þ

The observation process Yt is seen to consist of a

deterministic portion, a þ cYt�1 (identical to the

deterministic trend for Xt in Eq. 2), plus a noise portion

in parentheses, Etþ Ft� cFt�1. The noise portion in Eq.

4 is substantially different from the noise in Eq. 2, in that

a component, Ft�1, of the noise for Yt�1 appears in the

noise for Yt. Consequently, the noise term in Eq. 4 is

autocorrelated. The correlation of the noise for Yt with

that of Yt�1 can be shown to be �cs2/[r2 þ (1 þ c2)s2].
The process Yt is not a purely autoregressive process like

Xt; instead, Yt is a type of autoregressive moving average

(ARMA) process. The process Yt does not even have the

Markov property: the distribution of Yt depends not

only on Yt�1, but on the entire past history Yt�2, Yt�3, . . .

of the process. The fact that observation error induces

autocorrelation in the noise of an autoregressive process

is well-known in statistics (Walker 1960). For that

reason, checking for autocorrelation of residuals in

process-error-only models has been stressed as a

diagnostic tool for model evaluation (Dennis et al.

1991, Dennis and Taper 1994, Dennis and Otten 2000).

The point is, there is additional information in the

data that potentially could be exploited to estimate the

sampling variability parameter s2; the information is

manifested in the autocorrelation of the noise terms for

the observations. Whether the information is enough to

render r2 and s2 separately estimable is a major focus of

our study. We can anticipate that estimating s2 will be at
least as difficult as estimating an autocorrelation

coefficient in a time series, which is known to require

many observations for good precision.

The likelihood function for the observations y0, y1, . . .,

yq forms the basis for many statistical inferences about

the unknown parameters a, c, r2, and s2. The likelihood
function is constructed from the following result: the

random variable Yt, given Yt�1¼yt�1, Yt�2¼yt�2, . . . , Y0

¼ y0, has a normal distribution, with a mean mt and

variance v2
t that are computed recursively using the

model parameters and history of observations. We write

YtjðYt�1 ¼ yt�1; Yt�2 ¼ yt�2; . . . ; Y0 ¼ y0Þ; N ðmt; v
2
t Þ:
ð5Þ

The recursion relationships for mt and v2
t are

mt ¼ aþ c mt�1 þ
v2

t�1 � s2

v2
t�1

ðyt�1 � mt�1Þ
� �

ð6Þ

v2
t ¼ c2 v2

t�1 � s2

v2
t�1

s2 þ r2 þ s2: ð7Þ

If the initial population is assumed to arise from the

stationary distribution of Yt, the recursions are initiated

at the mean and variance of that stationary distribution:

m0 ¼ a/(1 � c), v2
0 ¼ [r2/(1 � c2)] þ s2. The stationary

assumption would be applicable if the observations

commenced after the population has been fluctuating

around carrying capacity for awhile. If the initial

population, however, is away from equilibrium, the

recursions are initiated at m0 ¼ x0, v2
0 ¼ s2, with x0

treated as an additional unknown parameter. This non-

stationary assumption would apply, for instance, when a

population commences at low abundance and grows to

carrying capacity. In some non-stationary situations,

such as an experimental population introduction, the

initial population might be known and therefore not

treated as an unknown parameter.

The results given by Eqs. 5–7 are well known in the

statistics literature (for instance, Harvey 1993). The

recursion equations (Eqs. 6 and 7) for the conditional

mean and variance are subsumed in four matrix

equations collectively termed the ‘‘Kalman filter’’ in

statistics (with main applications in electrical engineer-

ing). We derived the simplified representation presented

here in order to focus on details relevant to population

modeling. The published Kalman filter proofs tend to be

somewhat general, with dense notation and (ecologi-

cally) obscure terminology. The literature also tends to

emphasize the estimation and prediction of the under-

lying signal Xt rather than estimation of the process

parameters. We believe applications in ecology will

benefit from an increased emphasis on the likelihood

function, parameter estimation, model selection, and

model evaluation. Toward that end, we provide simple

derivation of Eqs. 5–7 in Appendix A, using just elemen-

tary mathematical statistics concepts and properties of

the bivariate normal distribution. As will be seen, using

this model requires numerical maximization and atten-

tion to detail. For fitting the model to data and

interpreting the results, it is helpful to have some

familiarity with the underlying statistical concepts.

The probability density function (pdf) for Yt, given

the history Yt�1¼ yt�1, Yt�2¼ yt�2, . . . , Y0¼ y0, is thus

that of a normal distribution:

f ðytjy0; y1; . . . ; yt�1Þ ¼ ðv2
t 2pÞ�1=2

exp �ðyt � mtÞ2

2v2
t

" #
: ð8Þ

Because Y0 ¼ X0 þ F0 (Eq. 3), the distribution of the

initial observation Y0 is also normal, with X0 being

either a normal random variable under the stationary

assumption or a constant (x0) under the non-stationary

assumption. The pdf for Y0 is

f ðy0Þ ¼ ðv2
02pÞ�1=2

exp �ðy0 � m0Þ2

2v2
0

" #
ð9Þ

with m0 and v2
0 initiated according to the stationary

assumption or non-stationary assumption.

The likelihood function is a function of the unknown

model parameters. It is the joint pdf for random
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variables Y0, Y1, . . ., Yq, evaluated at the recorded values

y0, y1, . . ., yq. The likelihood function is thus

Lða; c;r2; s2Þ
¼ f ðy0Þf ðy1jy0Þf ðy2jy0; y1Þ � � � f ðyqjy0; y1; . . . ; yq�1Þ

¼ ð2pÞ�ðqþ1Þ=2ðv2
0v2

1 � � � v2
qÞ
�1=2

exp � 1

2

Xq

t¼0

ðyt � mtÞ2

v2
t

" #
:

ð10Þ

Under the non-stationary case, the likelihood function

would include x0 as an unknown parameter. Calcu-

lations for parameter estimation (see Parameter Esti-

mation Methods) are typically performed with the

log-likelihood function given by

ln Lða; c;r2; s2Þ ¼ � ðqþ 1Þ
2

lnð2pÞ � 1

2

Xq

t¼0

ln v2
t

� 1

2

Xq

t¼0

ðyt � mtÞ2

v2
t

: ð11Þ

Two special cases of the likelihood are noteworthy. If

the underlying process Xt is purely deterministic, that is,

if r2¼ 0 in Eqs. 6 and 7, then mt becomes the trajectory

of the deterministic ‘‘skeleton’’ equation mt¼ aþ cmt�1,

and v2
t ¼ s2 is constant through time. The likelihood

function becomes the product of pdf’s for independent

normal distributions with constant variances

Lða; c; 0; s2Þ ¼ ðs22pÞ�ðqþ1Þ=2
exp � 1

2s2

Xq

t¼0

ðyt � mtÞ2
" #

:

ð12Þ

Eq. 12 is the likelihood function implied by fitting the

deterministic trajectory to the observations using non-

linear regression. On the other hand, if there is no

sampling variability (s2¼0), then yt¼xt with probability

1 for all values of t. The mean becomes mt ¼ a þ cyt�1,

the variance becomes v2
t ¼ r2, and under the nonsta-

tionary case the likelihood becomes

Lða; c;r2; 0Þ ¼ ðr22pÞ�ðqþ1Þ=2

3 exp � 1

2r2

Xq

t¼0

ðyt � a� cyt�1Þ2
" #

: ð13Þ

Eq. 13, the likelihood for a process-error-only model

starting at fixed initial value y0, leads to conditional least

squares estimates of parameters (one-step-ahead fitting;

Dennis and Taper 1994). For the stationary case, the

likelihood in Eq. 13 would be multiplied by the

stationary density [Eq. 9 with m0 ¼ a/(1 � c), v2
0 ¼ r2/

(1� c2)].

The recursion equations (Eqs. 6 and 7) represent

merely a convenient method of calculating the likelihood

or log-likelihood function. The observations Y0, Y1, . . .,

Yq in fact have a joint multivariate normal distribution

(derivation in Appendix A). When the initial observa-

tion arises from the stationary distribution, the expected

value (E) and variance (V) of each observation are as

follows:

EðYtÞ ¼
a

1� c
ð14Þ

VðYtÞ ¼
r2

1� c2
þ s2 ð15Þ

while the covariance of Yt and Ytþs is

CovðYt; YtþsÞ ¼
r2

1� c2
cs s.0: ð16Þ

Let Y¼ [Y0, Y1, . . ., Yq] denote the observed population

process written as a (q þ 1) 3 1 random vector. The

multivariate normal distribution for Y has a mean

vector, denoted m, with each element equal to the

stationary mean in Eq. 14, and a variance–covariance

matrix V with variances (diagonal elements) given by

Eq. 15 and covariances (off-diagonal elements) given by

Eq. 16. The likelihood function for the vector of time

series data, denoted y ¼ [y0, y1, . . ., yq], is the pdf of a

multivariate normal distribution

Lða; c;r2; s2Þ ¼ ð2pÞ�ðqþ1Þ=2jVj�1=2

3 exp � 1

2
ðy�mÞV�1ðy�mÞ

� �
: ð17Þ

Calculation of this likelihood (or its logarithm) requires

inversion of the (q þ 1) 3 (q þ 1) matrix V. This

likelihood (Eq. 17) and the Kalman-iterated form (Eq.

10) are equivalent. The Kalman-iterated form essentially

represents a partitioning scheme for inverting the matrix

V (Eubank and Wang 2002).

When the initial value of the underlying population

process is fixed at x0, the elements of the mean vector m

and the variance-covariancematrixV depend on time t, as

the process has not become stationary. The means, vari-

ances, and covariances for Y0, Y1, . . ., Yq are derived in

Appendix A and are given by the following expressions:

EðYtÞ ¼ a
1� ct

1� c
þ x0ct ð18Þ

VðYtÞ ¼ r2 1� ðc2Þt

1� c2
þ s2 ð19Þ

CovðYt; YtþsÞ ¼ r2 1� ðc2Þt

1� c2
cs s.0: ð20Þ

The likelihood function for the nonstationary case is

given by Eq. 17, except that the elements of m and V

come from Eqs. 18–20, and the initial value x0 must be

included in the list of unknown parameters.

Density independence

An important special case of the GSS model is density

independence, and for completeness, we present some of

the relevant statistical results. Density independence is

represented by c ¼ 1 (b¼ 0) in Eq. 2:

Xt ¼ Xt�1 þ aþ Et: ð21Þ

The resulting process model for population abundance is

a form of stochastic, discrete-time, exponential growth
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(or decay) model. The model serves as the null

hypothesis in various statistical tests for density depend-

ence (Pollard et al. 1987, Dennis and Taper 1994), and is

the discrete-time version of the diffusion process model

described by Dennis et al. (1991) for use in population

viability analysis (PVA).

The density-independent state-space model (Eq. 21, in

conjunction with Eq. 3), represents a stochastic expo-

nential growth model with observation error. The

likelihood and model properties of the density-independ-

ent state-space model merit separate consideration from

those of the density-dependent case. Setting c ¼ 1 does

not work in all of the above density-dependent formulas,

because that c value is the boundary of the parameter

space for which the process is (or eventually becomes)

stationary. The resulting statistically pathological prop-

erties are a part of what is known in statistics as the ‘‘unit

root’’ problem in time series analysis (Dickey and Fuller

1981). The population under Eq. 21 does not have a

statistical equilibrium; no stationary distribution exists.

The initial population size x0 therefore becomes an

unknown model parameter. The recursion equations for

the conditional mean and variance of Yt (given Yt�1 ¼
yt�1, Yt�2¼ yt�2, . . ., Y0¼ y0) become

mt ¼ aþ mt�1 þ
v2

t�1 � s 2

v2
t�1

ðyt�1 � mt�1Þ ð22Þ

v2
t ¼

v2
t�1 � s2

v2
t�1

s2 þ r2 þ s2 ð23Þ

with m0¼ x0, v2
0 ¼ s2. The log-likelihood function is Eq.

11, in which mt and v2
t are calculated with Eqs. 22 and

23, and x0 is treated as unknown.

As in the density-dependent case, the observations Y0,

Y1, . . ., Yq under the density-independent model have a

joint multivariate normal distribution, which provides

an alternative method of writing the likelihood function.

The means, variances, and covariances are derived in

Appendix A and are given by

EðYtÞ ¼ x0 þ at ð24Þ

VðYtÞ ¼ r2t þ s2 ð25Þ

CovðYt; YtþsÞ ¼ r2t s.0: ð26Þ

The likelihood function for the density-independent

model is the multivariate normal pdf (Eq. 17), with the

elements of m and V coming from Eqs. 24–26. The

Kalman-iterated form (Eq. 10 using Eqs. 22 and 23) is

equivalent.

The density-independent state-space model was pro-

posed by Holmes (2001) and Holmes and Fagan (2002)

as an improved basis for conducting PVA in the presence

of observation error. They adapted a linear regression

method for parameter estimation. However, likelihood-

based estimation methods (see Parameter Estimation

Methods) have some theoretically optimal large-sample

(Knight 2000) as well as small-sample (Godambe 1960)

statistical properties. Simulations of parameter estima-

tion for the density-independent state-space model have

supported likelihood-based methods (Staples et al.

2004), especially REML estimates based on differences.

Differences

In nonstationary situations, a standard technique in

applied time series analysis is taking the differences of

the observations. The differences lead to alternative

parameter estimation methods, and it is worthwhile to

investigate whether any benefits might result for

estimation under the density-dependent or density-

independent models. Let Wt ¼ Yt � Yt�1 (t ¼ 1, 2, . . .,

q) denote the first-order differences, and Ut¼Wtþ1�Wt

(t¼ 1, 2, . . ., q� 1) denote the second-order differences.

In the density-dependent model (Eqs. 2 and 3), the

process becomes stationary after sufficient time has

elapsed. Upon attaining stationarity, the first differences

W1, W2, . . ., Wq have a joint multivariate normal

distribution with

EðWtÞ ¼ 0 ð27Þ

VðWtÞ ¼ 2s2 þ 2
r2

1� c2
ð1� cÞ ð28Þ

CovðWt;Wtþ1Þ ¼ �
r2

1� c2
ð1� cÞ2 � s2 ð29Þ

CovðWt;WtþsÞ ¼ �
r2

1� c2
ð1� cÞ2cs�1 s � 2: ð30Þ

(see Appendix A for proof).

Note that differencing eliminates one parameter from

the density-dependent model. The parameter a does not

appear in the joint distribution of the first differences.

Onemight expect estimation of the remaining parameters

to be improved, calling to mind the removal of fixed-

effects parameters through REML estimation in mixed

effects models (Searle et al. 1992). In fact, the GSS model

is a type of mixed-effects model (see Parameter Estima-

tion Methods). However, the benefits if any of REML

estimation in the GSS model appear to be slight (see

Results). Also, if the process has not become stationary,

the mean, variance, and covariance terms in the GSS

model are then all functions of t, and differencing the

observations does not eliminate any parameters.

The density-independent process (Eqs. 21 and 3) is

highly nonstationary, with a mean increasing or

decreasing exponentially on the original scale, and

linearly on the logarithmic scale. The first differences,

however, are stationary. In Appendix A it is shown that

W1, W2, . . ., Wq have a joint multivariate normal

distribution with

EðWtÞ ¼ a ð31Þ

VðWtÞ ¼ r2 þ 2s2 ð32Þ
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CovðWt;Wtþ1Þ ¼ �s2 ð33Þ

CovðWt;WtþsÞ ¼ 0 s � 2: ð34Þ

Note that one parameter, the initial condition x0, has

been eliminated from the distribution.

Another parameter elimination in the density-inde-

pendence model occurs with the second differences U1,

U2, . . ., Uq�1. The second differences are stationary, and

they have a joint multivariate normal distribution with

EðUtÞ ¼ 0 ð35Þ

VðUtÞ ¼ 2r2 þ 6s2 ð36Þ

CovðUt;Utþ1Þ ¼ �r2 � 4s2 ð37Þ

CovðUt;Utþ2Þ ¼ s2 ð38Þ

CovðUt;UtþsÞ ¼ 0 s � 3: ð39Þ

(see Appendix A for proof).

Staples et al. (2004) reported that estimates of the

process and observation variances (r2 and s2) in the

density-independent model based on the second differ-

ences (REML estimates) had excellent statistical proper-

ties in simulations.

PARAMETER ESTIMATION METHODS

Maximum likelihood estimation

ML parameter estimation is accomplished through

maximization of the likelihood or log-likelihood func-

tion. The likelihood function can be calculated either in

the Kalman-iterated form (Eq. 10) or in the multivariate

normal form (Eq. 17). For the GSS model in the

stationary case, the unknown model parameters are a, c,

r2, and s2; in the non-stationary case, the unknown

parameters are a, c, r2, s2, and x0. For the density-

independent model, the unknown parameters are a, r2,

s2, and x0. The values of the unknown parameters that

jointly maximize the likelihood or log-likelihood are the

ML parameter estimates.

Closed formulas are not available for ML (or REML)

estimates in the GSS model; numerical maximization is

necessary. The Nelder-Mead simplex algorithm for

unconstrained minimization/maximization is easy to

program (Press et al. 1992) and is remarkably robust.

Various computer packages for mathematical calcula-

tion such as GAUSS (Aptech Systems, Maple Valley,

Washington, USA), MATLAB (The Math Works,

Natick, Massachusetts, USA), and MATHCAD (Math-

soft, Cambridge, Massachusetts, USA) include the

Nelder-Mead and other algorithms as pre-programmed

library routines.

More conveniently, the PROC MIXED procedure in

SAS can be used to obtain the parameter estimates for

the stationary case of the GSS model. The multivariate

normal likelihood (Eq. 17), with the mean and cova-

riance structure given by Eqs. 14–16, is identical to the

likelihood of an analysis of variance model with repeated

measures and mixed effects. The analysis of variance

model has q þ 1 repeated measures on a single subject,

with (1) a fixed subject mean, (2) an AR(1) covariance

structure for the repeated measures, and (3) a random

time effect. In the resulting model parameterization, the

fixed subject effect (intercept) is the stationary mean of

Xt [given by a/(1� c)], the variance–covariance matrix of

the repeated measures has main diagonal elements equal

to the stationary variance of Xt [r
2/(1 � c2)] and off-

diagonal elements equal to the covariance of Xt and Xtþs
([r2/(1 � c2)]cs), and the variance component for the

random time effect is the observation error variance (s2).
An SAS program implementing the calculations (ML or

REML) is provided in Appendix B, along with an-

notated program output.

The most important and difficult problem in ML (and

REML) estimation for the GSS model is that the

likelihood functions tend to have multiple modes, often

three. Two of the local maxima, when they occur, are

typically related to the special cases involving no process

noise (r2 ¼ 0) or no observation error (s2 ¼ 0). The

estimates of parameters at the special-case maxima are

close to the estimates arising from using Eqs. 12 and 13

as likelihoods (see Results). If the correct model is

assumed to have both r2 . 0 and s2 . 0, the proper ML

estimates correspond to a local maximum in the

likelihood function at which the estimates of r2 and s2

are interior points of the parameter space. The special-

case estimates at the edge of parameter space are not

statistically consistent when the data were indeed

produced with appreciable amounts of both process

noise and observation error (‘‘statistically consistent’’

means that estimates converge to the true parameter

values as time series length increases). The theory of

likelihood estimation indicates that when there are

multiple maxima the likelihood has at most one local

maximum corresponding to consistent parameter esti-

mates (under regularity conditions ostensibly met here

[Huzurbazar 1948, Rohatgi 1976]). Users of the SAS

program (Appendix B) should be cautioned that PROC

MIXED uses only local maximization with starting

parameter values based on moment estimates. The SAS

procedure has an option to calculate the likelihood

function for a grid of user-specified starting values; the

option might help an investigator to locate additional

likelihood peaks.

Interestingly, the globally highest peak in a GSS

likelihood does not necessarily correspond to the statisti-

cally consistent estimates. In simulations of observations

from the GSS model, we have found that it is not

uncommon for the highest likelihood peak to be one of

the special-case maxima. In one set of GSS simulations

(time series length 30), under appreciable amounts of

both process noise and observation error, 818 out of 2000

likelihoods were highest at one of the special case
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maxima. The likelihood surface should be fully explored

with different initial parameter values in the max-

imization calculations in order to find the interior

solution. In particular, automating such explorations in

computer programs for simulation and bootstrapping is

a challenge. We have had success with a genetic

algorithm (Eiben and Smith 2003), which introduces

random variation (‘‘mutations’’) each iteration into

parameter values and selects new parameters based on

the height of the likelihood (‘‘fitness’’). We suggest using

exponential distributions for the random variation, with

initial means taken as the values from fitting the process-

error-only model (simple regression formulas), with the

initial mean for s2 set equal to that of r2. Simulated

annealing algorithms might be useful as well (see Press et

al. 1992, De Valpine and Hastings 2002). When multiple

peaks exist, the region of initial parameter values for

which local hill-climbing algorithms lead to the proper

interior peak is frequently small.

Profile likelihoods help reveal the information con-

tained in the data about particular parameters. A profile

likelihood is calculated by fixing the value of an unknown

parameter, say r2, and maximizing the (log) likelihood

using all the remaining unknown parameters. The process

is repeated formanydifferent fixed values ofr2, ultimately

producing a graph of the maximized log-likelihood as a

function of the fixed values of r2. A steep, concave-down,

approximately parabolic profile likelihood is a fair

indication that the parameter is well estimated from the

data. A profile likelihood surface can be calculated by

using a grid of fixed values of two parameters (perhaps r2

and s2) and maximizing the log-likelihood at each grid

point over the remaining parameters.

Restricted maximum likelihood estimation

In the density-dependent GSS model, we established

that the first differences have a multivariate normal

distribution with a zero mean vector (Eqs. 36–39),

provided the process has attained stationarity. We

denote the recorded differences by w1 ¼ y1 � y0, w2 ¼
y2� y1, . . ., wq¼ yq� yq�1, and u1¼ w2� w1, u2¼ w3�
w2, . . ., uq�1 ¼ wq � wq�1.

In the stationary case of the density-dependent model,

the likelihood function for the first differences becomes

Lðc;r2; s2Þ ¼ 1

ð2pÞq=2jUj1=2

" #
exp � 1

2
w 0U�1w

� �
ð40Þ

where w ¼ [w1, w2, . . ., wq], and U is the variance–

covariance matrix having terms in the form of Eq. 28 on

the main diagonal, terms in the form of Eq. 29 on the

upper and lower subdiagonals, and terms in the form of

Eq. 30 elsewhere (see Appendix A). The log-likelihood is

then

lnLðc;r2; s2Þ ¼ � q

2
lnð2pÞ � 1

2
lnðjUjÞ � 1

2
w 0U�1w: ð41Þ

The restricted maximum likelihood (REML) estimates

of c, r2, and s2 for the stationary, density-dependent

model are found by numerically maximizing Eq. 41.

Even though the log-likelihood for the REML estimates

contains one fewer parameters than for the ML

estimates, multiple peaks can and do occur, and all the

precautions mentioned for calculating ML estimates

apply here. Once the REML estimates of c, r2, and s2

are obtained, the parameter a is estimated by max-

imizing the multivariate normal likelihood for the

undifferenced observations (Eq. 17, with elements in m

and V given by Eqs. 14, 15, and 16) , holding c, r2, and

s2 fixed at their REML values. In fact, the maximization

for a constant mean vector in the multivariate normal

has a closed form solution; the result for the REML

estimate for a is

a ¼ ð1� cÞ j
0V�1y

j 0V�1j
ð42Þ

where j0 ¼ [1 1 � � � 1] is a vector of 1’s.

The SAS program we provided (see Appendix B) can

calculate REML estimates. In fact, REML estimation is

the default method in recent versions of PROC MIXED

in SAS, due to the growing evidence of the frequent

superiority of REML estimates over ML estimates in

mixed effects models (Littell et al. 1996). Our simu-

lations (see Results) are more equivocal. In any case, the

same cautions about multimodal likelihoods should be

heeded for REML estimation.

For the density-independent model, the second differ-

ences are required for eliminating all the parameters in

the mean, in order to concentrate the information in the

data for estimating r2 and s2. The likelihood function

for the second differences becomes

Lðr2; s2Þ ¼ 1

ð2pÞq=2jW2j1=2

" #
exp � 1

2
u 0W�1

2 u

� �
ð43Þ

(see Appendix A), and the log-likelihood is

ln Lðr2; s2Þ ¼ � q

2
lnð2pÞ � 1

2
lnðjW2jÞ �

1

2
u 0W�1

2 u ð44Þ

where u is the (q � 1) 3 1 vector of second differences,

and the elements of the variance–covariance matrix W2

are in the forms given in Eqs. 36–39. The REML

estimates of r2 and s2 are found by maximizing Eq. 44.

Then, the REML estimate of a is found by maximizing

the multivariate normal likelihood of the first differ-

ences, with the values of r2 and s2 fixed at their REML

values. The result can be written analytically as follows:

a ¼ j 0W�1
1 y

j 0W�1
1 j

: ð45Þ

Here, W1 is the variance–covariance matrix containing

elements given by Eqs. 31–34. Finally, the estimate of x0
is obtained from the multivariate normal distribution of

the original undifferenced observations, with a, r2, and

s2 held fixed at their REML values. We find that
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x0 ¼
j 0W�1ðy� qaÞ

j 0W�1j
: ð46Þ

Here, W is the variance-covariance matrix with elements

given by Eqs. 25–26, and q ¼ [0, 1, 2, . . ., q]. The SAS

program provided by Staples et al. (2004) as an online

supplement can be used for the REML calculations.

Functions of parameters

Estimating various functions of parameters might be

of interest. Recall that the mean and variance of the

stationary distribution of the observations (log scale)

are, respectively, E(Y‘)¼a/(1� c), V(Y‘)¼r2/(1� c2)þ
s2, and the mean and variance for the stationary

distribution of the underlying process are E(X‘) ¼ a/(1

� c), V(X‘) ¼ r2/(1 � c2). These can be estimated by

substituting ML or REML parameter estimates. On the

original scale, the mean and variance of the lognormal

stationary distribution of the observations are given by

E½expðY‘Þ� ¼ exp EðY‘Þ þ
1

2
VðY‘Þ

� �
ð47Þ

V½expðY‘Þ� ¼ exp½EðY‘Þ�f g2
exp½VðY‘Þ� � 1f g ð48Þ

and the mean and variance of the lognormal stationary

distribution of the underlying population abundance are

given by

EðN‘Þ ¼ exp EðX‘Þ þ
1

2
VðX‘Þ

� �
ð49Þ

VðN‘Þ ¼ exp½EðX‘Þ�f g2
exp½VðX‘Þ� � 1f g: ð50Þ

These functions also are estimated by substituting the

values of parameter estimates. The deterministic concept

of ‘‘carrying capacity’’ is left behind in stochastic models

(e.g., Dennis and Patil 1984, Dennis and Costantino

1988, Dennis and Taper 1994), but the stationary

distribution mean, E(N‘), represents a long term

expected size around which the population fluctuates,

with the magnitude of the fluctuations measured by

V(N‘).

Percentiles of the stationary distributions also might

be of interest. The percentiles of the two stationary

normal distributions (i.e., observation Y‘ and process

X‘) are obtained using the stationary means and

variances in the usual location-scale transform of

standard normal distribution percentiles. The stationary

normal distribution percentiles are then transformed

exponentially to obtain the percentiles of the lognormal

stationary distributions. For instance, the 100 3 pth

percentile, denoted gp, of the lognormal stationary

distribution for the observations is given by

gp ¼ exp EðY‘Þ þ zp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðY‘Þ

ph i
ð51Þ

where zp is the 100 3 pth percentile of the standard

normal distribution (value of z for which the area under a

standard normal curve between �‘ and z is p). To

estimate gp, E(Y‘) and V(Y‘) in Eq. 51 are calculated

with the parameter estimates. One potential use for

stationary distribution percentiles is in a population

monitoring program. A lower percentile could be

designated as a warning level; a system’s change for the

worse might be indicated if a population’s abundance

dropped outside some ordinary range of variability.

Various proportional measures of variance compo-

nents can be defined and estimated. The quantity r2þ s2

is the one-step variability of the observation Yt given the

previous log population size Xt�1. One definition of the

proportional component of variance due to process

noise, denoted /1, uses that one-step variability in the

denominator as a reference. The proportion of one-step

variability inYt, so defined, due to the underlying process

variability becomes a simple function of r2 and s2:

/1 ¼
r2

r2 þ s2
: ð52Þ

Another definition uses the variance of the stationary

distribution of the observations, V(Y‘), as the reference.

The proportion of variability in the stationary distribu-

tion due to the underlying process variability is

/2 ¼
VðX‘Þ
VðY‘Þ

¼ r2

r2 þ s2ð1� c2Þ : ð53Þ

The density-dependence parameter c appears in this

variance component measure because the stationary

distribution variance reflects a blend of stochastic and

deterministic forces. Ives et al. (2003) discuss further the

concepts of stability and equilibrium in stochastic

systems.

One can estimate the current value of the underlying

population process Xt with the GSS model. An easy way

to do this is to use the expected value of Xt given the

history of the Yt values up to and including Yt.

Embodied in the derivation of the Kalman recursions

in Appendix A (especially Eq. A.16) is the relationship

given by

EðXtjYt ¼ yt; Yt�1 ¼ yt�1; . . .; Y0 ¼ y0Þ

¼ mt þ
v2

t � s2

v2
t

ðyt � mtÞ ð54Þ

where mt and vt are the recursively computed moments

(Eqs. 6, 7). Point estimates of the Xt values are obtained

by substituting the ML or REML parameter estimates

into Eq. 54. In the state-space literature, a population

estimate produced by Eq. 54 is the ‘‘filtered’’ value, that

is, the expected value of Xt given the observations up to

and including time t. An alternative is to calculate the

‘‘smoothed’’ value for Xt as the expected value of Xt

given all the observations Y0, Y1, . . ., Yq (that is,

including those subsequent to time t); for details see

Harvey (1993). Whether the filtered or smoothed value is

a more accurate predictor depends on various factors,

for example, on whether the process prior to t was

mainly transient or stationary.
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RESULTS

Example analyses using GSS model

The illustrative data set (Fig. 1) charts annual

American Redstart (Setophaga ruticilla) counts at a

survey location in the North American Breeding Bird

Survey (BBS; Robbins et al. 1986, Peterjohn 1994). The

data in the BBS are problematic in that the observations

contain heterogeneous observation error. Survey routes

are traversed by different observers with different

training, abilities, hearing, eyesight, under different

observing conditions. Nevertheless, the route locations

are numerous and spatially extensive, and many of the

time series exceed 30 yr in length. While the short-

comings of the BBS methodology are well documented,

investigators remain confident that meaningful ‘‘signals’’

might be extracted which could prove valuable for

monitoring and assessing trends in North American bird

populations. Early statistical attempts to estimate trend

in BBS data with linear regression (e.g., Bohning-Gaese

et al. 1993) have been superceded by contemporary

‘‘overdispersed’’ models of count data that accommo-

date observer effects (Link and Sauer 1997, 1998).

We fitted the GSS model to the data with ML and

REML estimation (Table 1, Fig. 1). We also calculated

approximate 95% confidence intervals for the parame-

ters under ML and REML estimation using parametric

bootstrapping (Table 1). To obtain the bootstrap

confidence intervals, we simulated 2000 data sets from

the ML- and REML-estimated GSS models and

recalculated estimates for each simulated data set. Our

algorithm rejected solutions with r2 or s2 near zero and

instead repeated and widened the search for an interior

local maximum using different initial values. The 2.5th

and 97.5th empirical percentiles of the 2000 ML and

REML values were taken as the confidence interval

boundaries (Dennis and Taper 1994, Manly 1997). Thus,

the confidence intervals reflect the sampling variability

of the local interior solution and were not spread over

separated intervals of parameter space. The ML and

REML estimation methods yielded somewhat different

values for the parameters. The ML estimate of a was

considerably larger than the REML estimate, while the

REML estimate of c was larger than the ML; both

REML estimates were outside the ML-based confidence

intervals (Table 1). The REML confidence intervals by

contrast contained the ML estimates. The computer

simulations presented below suggest that ML and

REML estimates both have considerable sampling

variability.

The fitted GSS model yielded estimates of the

properties of the stationary distribution of population

abundance (Table 2). The estimated stationary distribu-

tion of the log-scale observations under REML has

larger variance than under ML, although the estimated

means are similar. Translated to the original scale, the

lognormal stationary distribution for the observed

population abundance has 97.5th percentile (g0.975)

estimated to be almost twice as large under REML as

under ML, but the 2.5th percentile (g0.025) estimates are

very close (Table 2). The ML estimates of the 2.5th and

97.5th percentiles for the lognormal stationary distribu-

tion of the underlying population process, Nt, are

estimated to be (2.45, 18.28). Under the ergodic theorem

for stochastic processes, the population abundance

FIG. 1. Observed population counts of American Redstart, 1966–1995, from record number 0214332808636 of the North
American Breeding Bird Survey (circles and solid line; see Peterjohn [1994] for description of data and sampling methods) and
estimated population abundances from the fitted Gompertz state-space model (triangles and dotted line; see Table 1 legend).
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would spend 95% of the time in the long run between

those percentiles (discussion in Dennis and Costantino

[1988]). The wide population fluctuations reinforce the

idea that ‘‘carrying capacity’’ is better described by a

stationary probability distribution than by a determin-

istic point equilibrium (Dennis and Patil 1984, Dennis

and Costantino 1988).

The estimated variance components suggest that a

substantial proportion of the observed population

fluctuation is due to observation error (Table 2). Using

the ML estimates, the proportional variance component

due to the underlying process noise, under the definition

given by Eq. 52, is estimated at /̂1¼ 0.2958, and under

the definition in Eq. 53, is estimated at /̂2 ¼ 0.5314.

Recall that these quantities measure different concepts

and are not expected to have similar values; the value of

/̂1 suggests that more than 70% of the variation in the

one-step fluctuations of the observations is observation

error, while /̂2 suggests that observation error contrib-

utes almost half of the variability in the stationary

distribution of the observations.

The GSS model fitted the data well. The estimates of

the underlying local population abundances in the
sampled area, calculated with Eq. 54 using the ML

parameter values, tracked the observations, but with

considerably less variability (Fig. 1). As reflected in the

estimated variance components (above), the large

volatility of the observations evident in Fig. 1 is
estimated by the model to be due substantially to

observation error. Recall that the information for such

estimation is contained in the pattern of covariances

displayed by the observations.

The GSS model described the covariance patterns of

the data especially well, whereas the models with only

process noise or observation error gave poor descrip-
tions of the covariances. Fig. 2 shows the empirical

covariances at various time lags, along with the

theoretical covariances of the three models fitted to the

data with ML estimation. For instance, the theoretical

covariances of the GSS model (Eqs. 15, 16) were

calculated using the ML parameter estimates for the
GSS model (solid line, Fig. 2). Such excellent covariance

description is important if a model is to be used for

forecasting variability and first-passage properties. The

extra sampling variance at the origin, termed the

‘‘nugget’’ in spatial statistics, is shown as a vertical bar

TABLE 1. Maximum likelihood (ML) and restricted maximum
likelihood (REML) estimates for the parameters a, c, r2, and
s2 in the Gompertz state-space model.

Estimate a c r2 s2

ML 0.3929 0.7934 0.09726 0.2315
(0.15, 1.4) (0.30, 0.92) (0.020, 0.29) (0.072, .38)

REML 0.1165 0.9427 0.06060 0.2622
(0.015, 1.7) (0.23, 0.99) (0.0068, 0.26) (0.076, 0.44)

Notes: The Gompertz state space model is given by Xt¼ aþ
cXt�1þ Et , Yt¼ Xtþ Ft , where Xt is the natural logarithm of
population abundance, Yt is the observed or estimated value of
Xt , Et has a normal distribution with mean 0 and variance r2, Ft

has a normal distribution with mean 0 and variance s2, a and c
are constants, and t is time. Approximate 95% confidence
intervals calculated with parametric bootstrapping appear in
parentheses. The data were from record number 0214332808636
(American Redstart) of the North American Breeding Bird
Survey, years 1966–1995. The observations are 18, 10, 9, 14, 17,
14, 5, 10, 9, 5, 11, 11, 4, 5, 4, 8, 2, 3, 9, 2, 4, 7, 4, 1, 2, 4, 11, 11, 9, 6.

TABLE 2. Maximum likelihood (ML) and restricted maximum
likelihood (REML), estimates for various functions of the
parameters a, c, r2, and s2 in the Gompertz state-space
model, using the data listed in Table 1.

Parameter ML REML

E(X‘) 1.902 2.033
V(X‘) 0.2625 0.5444
V(Y‘) 0.4940 0.8066
E(N‘) 7.637 10.03
g0.025 1.689 1.314
g0.975 26.56 44.41

/1 0.2958 0.1877
/2 0.5314 0.6749

Notes: Here E(X‘) ¼ a/(1 � c) [¼ E(Y‘)] is the mean of the
stationary distribution of log population abundance Xt (and of
the estimated log abundance Yt), V(X‘) ¼ r2/(1 � c2) is the
variance of the stationary distribution of Xt, V(Y‘) ¼ [r2/(1 �
c2)] þ s2 is the variance of the stationary distribution of Yt,
E(N‘) ¼ exp[E(X‘) þ V(X‘)/2] is the mean of the lognormal
stationary distribution for population abundance Nt, g0.025 and
g0.975 are, respectively, the 2.5th and 97.5th percentiles of the
lognormal stationary distribution for the estimated population
abundance exp(Yt), and /1¼r2/( r2þ s2) and /2¼r2/[r2þ (1
� c2)s2] are measures of the proportion of variability in the data
due to processes error.

FIG. 2. Sample autocovariances (logarithmic scale; solid
circles) at different lags, calculated from log-transformed
American Redstart population data from Fig. 1. The solid line
connects the theoretical covariances for the observations under
the Gompertz state-space model (see Table 1 legend). The
dashed line connects theoretical covariances for the underlying
stochastic Gompertz model with process error only. The dotted
line connects the theoretical covariances under the stochastic
Gompertz model with observation error only. All models were
fitted using maximum likelihood.
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with length equal to the estimate of s2 near the vertical

axis. The stochastic Gompertz model with process noise

only has theoretical covariances identical to Eqs. 15 and

16 with s2 set to zero. Fitting the stochastic Gompertz

model with only process noise yielded a model with

theoretical covariances that failed to describe the shape

of the empirical covariances (dashed line, Fig. 2).

Because the process-error-only model lacks the extra

parameter for observation error at a lag of 0, the

resulting geometric series of theoretical covariances did

not capture the break at lag 1 in the rate of decrease of

the empirical covariances. An observation-error-only

model, having theoretical covariances of zero, failed

even worse to describe the empirical covariances (dotted

line, Fig. 2).

The likelihood function for the GSS model with the

BBS data set is multimodal, although the multimodality

is hard to illustrate in two dimensions. The upper two

rows of Fig. 3 display the profile likelihoods individually

for the four model parameters. Each profile was

calculated by fixing the value of the parameter of

interest, maximizing the log-likelihood over the remain-

ing parameters, and repeating the process by fixing

many values of the parameter of interest along the

horizontal axis. The profiles appear ridge-shaped and

even bimodal. A ‘‘shoulder’’ on the right of the r2 profile

(Fig. 3, middle row, left) indicates the location of a local

maximum and corresponds to the process-noise-only

model. A local maximum at r2 ’ 0 that gives the

observation-error-only model is not visible in the profile

plots. The ML estimates are indicated by vertical lines in

the graphs. Different sets of initial parameter values

cause ordinary hill-climbing algorithms to converge to

different local maxima. For some data sets we have

FIG. 3. In the top four graphs, solid curves are profile likelihoods for the parameters a, c, r2, and s2 in the Gompertz state-space
model (see Table 1 legend), calculated with the American Redstart population data from Fig. 1. Dotted vertical lines indicate
locations of maximum likelihood estimates. In the bottom two plots, solid curves are contours for joint profile likelihoods for the
parameter pairs r2 and s2 (left) and a and c (right) calculated with the American Redstart population data from Fig. 1.

BRIAN DENNIS ET AL.334 Ecological Monographs
Vol. 76, No. 3



observed that the ‘‘basins of attraction,’’ i.e., zones of

initial parameter values for which an algorithm con-

verges to a given local maximum, are banded. The

bottom row of Fig. 3 shows joint profile likelihoods for

two parameter pairs: r2 and s2 (left), and a and c (right).

The profile likelihoods were computed by fixing the pair

of parameter values at points over a grid, and max-

imizing the likelihood for the remaining two parameters;

the panels display contours for the resulting landscapes.

In the profile plot for r2 and s2, the arrow indicates the

location of the local maximum for the process-noise-

only model. The likelihood ridge in both joint profile

plots is seen to be extremely narrow. It should be noted

that greatly improved estimation of process variation

can result when there is external information available

about measurement error, as shown by Ferrari and

Taper (2006) for the density-independent case.

We leave until a future paper the questions of whether

alternative models provide better descriptions of the BBS

data in Fig. 1, and of what statistical approaches should

be used to conduct the model comparisons. For instance,

the data give a visual impression of exponential decrease,

although such wide fluctuations are consistent with, and

well described by, the GSS model. The REML estimate

of c near 1 (Table 1) suggests that the density-

independent model (Eqs. 2 and 21) might be viable. As

well, the data might reflect a density-dependent process

decreasing to a new, lower, carrying capacity, in which

case fitting the GSS model under the nonstationary

assumption (Eqs. 17–20) might be necessary. The BBS

data set we selected for illustrating the GSS model is not

a poster child but rather exemplifies some of the practical

problems in model selection and model fitting that can be

encountered. For the GSS model family, statistical

properties of parametric bootstrap hypothesis testing

and of information-theoretic model selection indexes are

not well understood and will require extensive simulation

in order to gain confidence in these methods.

Simulation of parameter estimation

We simulated ML and REML estimation for the GSS

model, under the stationary case (Fig. 4). Using the ML

estimates for the BBS data in the role of the ‘‘true’’

parameter values (Table 1), we simulated 2000 data sets of

length 30 (i.e., q¼29) and 2000 data sets of length 100 (q¼
99), and calculated ML and REML estimates for each

simulated data set. The longer length of 100 is of course

unrealistic for ecological data, but it serves to reveal how

slowly the estimates converge to the true parameter

values. In each simulated data set, the initial population

abundances were drawn from the stationary distribution.

The box plots in Fig. 4 show the simulated parameter

estimates divided by the true parameter values, so that the

relative variability of the estimates can be compared

across different parameters. For time series of length 30,

ML estimates were variable but acceptable (Fig. 4, top

row); however, skewness and small departures from

centering can be discerned in the box plots. The REML

estimates were superior to the ML estimates, in that the

REML estimates were better centered on the true
parameter values (Fig. 4, second row).

For time series of length 100, the ML and REML
estimates performed somewhat better than for length 30

in terms of bias (Fig. 4, bottom two rows). However, the
reduction of variability was considerably slower than

one generally expects in likelihood-based estimation.
For instance, the simulated ML estimates were centered
better on the true values, but the variability of the

estimates was hardly diminished (compare graphs in the
third row of Fig. 4 to corresponding graphs in first row).

Similarly, the variability of the REML estimates hardly
changed with time series length 100 (compare bottom

row of Fig. 4 to second row). The pattern of improved
centering but slow decrease in variability is common in

estimation problems involving dependent observations.
Various functions of parameters were estimated well

in the simulations under both ML and REML (Fig. 5).
The 2000 parameter sets (time series length 30) were

used to calculate estimates of stationary distribution
quantities and variance components. The mean of the

stationary distribution for Yt (and Xt) was estimated
especially well by both ML and REML (top row, Fig. 5).

The estimated variances of the stationary distributions
for both Xt and Yt (second and third rows, respectively,

Fig. 5) had small biases under ML but were more
variable under REML. The two definitions of variance

components (Eqs. 52, 53) had estimates under both ML
and REML that displayed little bias; The estimates of /1

under ML and REML (fourth row, Fig. 5) were more

variable than the estimates of /2 (bottom row, Fig. 5).
The high quality of the estimates of the variance

component /2, the proportion of long-term variability
in the observations due to process error, suggests that

the quantity deserves greater attention as a metric in
ecological studies.

DISCUSSION

GSS contrasted with other models

Link and Sauer (1997, 1998) developed an over-
dispersed multinomial model for the BBS counts. Their
approach takes into account the effects on sampling of

different observers and changes through time in the
abilities of observers. The underlying model for pop-

ulation abundance is not a population model per se, but
rather is a flexible function of time for the purpose of

estimating trend in the data. The approach is a
comprehensive attempt to incorporate observer effects

and other covariates into the model of the sampling
process. The GSS model, by contrast, differs in taking

all sampling effects as random lognormal noise, which
certainly represents overdispersion, but not as explicitly.

Also, the GSS model uses a process-oriented model for
population abundance that contains the ecological

processes of density dependence and environmental
noise. The GSS model and its submodels have specific,

fixed trends: no long-term trend for the full model,
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exponential growth or decrease for the density-inde-

pendent submodel. In using the GSS model, the

investigator makes stricter assumptions about the form

of population growth for purposes of evaluating those

assumptions with data.

The state-space model of De Valpine and Hastings

(2002) includes the GSS model as a special case. In their

formulation, the underlying process model can be any

single-population, stochastic, discrete-time growth mod-

el, and the observation process can have many

distributional forms. In particular, De Valpine and

Hastings study a stochastic Moran-Ricker model

(Dennis and Taper 1994) for the underlying population

process, combined with normal observation error. Their

framework could accommodate discrete distributions,

such as the Poisson or negative binomial, for more

realistic modeling of observation errors in count data, as

might be more appropriate for BBS data. The computa-

tionally intensive algorithm of Kitagawa (1987) that

they adopt for calculating the likelihood function

basically mimics the Kalman filter derivation (see

Appendix A) by simulation. Calculating ML estimates

requires the additional task of numerical maximization,

with the likelihood re-simulated at each maximization

iteration. De Valpine and Hastings simulated ML

estimation for their Ricker/normal state-space model,

and they reported improved properties of the ML

estimates over properties of estimates obtained with

the misspecified model containing process error alone.

De Valpine and Hastings noted the occurrence of

multimodal likelihoods in their simulations, but do not

seem to have adapted the simulations to the possibility

FIG. 4. Box plots (minimum, 25th percentile, median, 75th percentile, maximum) of maximum likelihood (ML) and restricted
maximum likelihood (REML) parameter estimates divided by their true values, for the parameters a, c, r2, and s2 in the Gompertz
state-space model, calculated for 2000 simulated time series data sets. Data sets were simulated from the Gompertz state-space
model (see Table 1 legend) using the ML parameter estimates from Table 1 as the true values. Top row, 30 observations, ML;
second row, 30 observations, REML; third row, 100 observations, ML; fourth row, 100 observations, REML.
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that the correct local maximum corresponding to the

consistent likelihood root might not be the highest

maximum. It is not known how often the multimodality

occurs in the De Valpine and Hastings model, but the

fact that multimodality occurs frequently in the GSS

model, at an ecologically optimistic sample size of 30

observations, gives reason for pause. It is possible that

the consistent ML estimates for the De Valpine and

Hastings model perform considerably better than their

simulations indicate.

The De Valpine and Hastings (2002) approach, while

computationally intensive, is not Bayesian, but is rather

a method of fitting a more realistic state-space model

under a frequentist setting. By contrast, Bayesian

approaches to state-space population models are being

implemented more often (De Valpine 2002, Buckland et

al. 2004, Clark and Bjørnstadt 2004). Ongoing develop-

ment and improvement of software for the Bayesian

calculations (for example, the BUGS software; see

Meyer and Millar 1999b, Millar and Meyer 2000b) is

helping to make Bayesian analysis more accessible.

FIG. 5. Box plots (minimum, 25th percentile, median, 75th percentile, maximum) of maximum likelihood (ML) and restricted
maximum likelihood (REML) parameter estimates divided by their true values, for five functions of parameters a, c, r2, and s2 in
the Gompertz state-space model (see Table 1 legend), calculated for 2000 simulated time series data sets with 30 observations each.
Data sets were simulated from the Gompertz state-space model using the ML parameter estimates from Table 1 as the true values.
First row: a/(1� c), the mean of the stationary distribution of log population abundance Xt (and of the estimated log abundance
Yt). Second row: r2/(1 � c2), the variance of the stationary distribution of Xt. Third row: [r2/(1 � c2)] þ s2, the variance of the
stationary distribution of Yt. Fourth row: r2/(r2 þ s2) (¼ /1), a measure of the proportion of variability due to process error.
Bottom row: r2/[ r2þ (1 � c2)s2] (¼ /2), a second measure of the proportion of variability in the data due to processes error.
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Through the use of vague prior distributions, the

peculiarities of the likelihood (such as in Fig. 3) are in

essence smoothed over in the Bayesian setting. A note of

caution, however, is appropriate: because convergence

of the likelihood-based estimates to the true parameter

values with increasing sample size is slow, the influence

of even the vaguest priors on the analysis results can

potentially remain large, say for sample sizes of 30

observations. Investigators should be aware that a

Bayesian analysis is not just another statistical tool,

but rather represents a substantially different approach

to statistics and even to the philosophy of science

(Lindley 1990, Dennis 1996, 2004, Mayo 1996).

The GSS model, in contrast to the above approaches,

is minimalist. It uses just four parameters and has a

relatively simple likelihood function, that of a multi-

variate normal distribution. Numerical maximization is

the only computing required for obtaining point

estimates. The simplicity of the model allowed insights

into how statistical properties of population data with

observation error differ from those of data with just

process noise, how density dependence and observation

error propagate into the covariance structure of the time

series, and how joint estimation of process noise

variance and observation error variance can be accom-

plished. Even with only four parameters, though, the

model approaches the statistical limits of estimability;

the ridge-shaped, multimodal likelihoods suggest that

little additional information can be extracted from

unreplicated single-species time series data.

Density independence

The statistical results included here for the density-

independent case extend the work of Holmes (2001),

Holmes and Fagan (2002), and Staples et al. (2004).

Population viability analyses under density dependence

or independence is potentially improved when observa-

tion error is accounted for and propagated into the

extinction risk assessments (Holmes 2001). Many

populations are expected on principle to be density

dependent (Boyce 1992), but the density-independent

case will remain an important model for situations in

which the population is not limited by habitat, such as

for new introductions or populations endangered by

excessive harvesting. The simulations of Staples et al.

(2004), as noted earlier, indicated that REML parameter

estimates based on second differences had acceptable

statistical properties for the density-independent state-

space model. In fact, the REML estimates are better

than they reported; the rare extreme over-estimates of

the process noise variance (Fig. 1 in Staples et al. 2004)

turn out to be instances where their simulation search

algorithm settled on an incorrect likelihood maximum

near the boundary of parameter space.

Observation error models

The observation error model given by Eq. 3 is likely to

be a fairly robust description of many ecological

sampling situations. The sampling model embodies

many standard sampling methods, with added hetero-

geneity.

As an example, consider a plot- or area-based

sampling method for estimating an unknown population

abundance or density Nt. The distribution of counts in

the plots, under ideal circumstances, is like a binomial or

Poisson distribution. In such models, the variance of the

estimate turns out to be proportional to Nt (Pielou

1977). Ordinary mark-recapture sampling models under

ideal circumstances also feature estimator variance

expressions that are proportional to the unknown

population abundance (Otis et al. 1978). Because the

mean of these estimators is equal to (unbiased or

approximately unbiased estimate) or proportional to (in

the case of abundance ‘‘indexes’’ such as light trap

counts or spotlight drives) the abundance Nt, the

coefficient of variation (standard deviation divided by

mean) of the estimators changes with different Nt values;

specifically, the coefficient of variation is proportional to

1/
ffiffiffiffiffi
Nt

p
.

Ecological sampling is not often ideal, however.

Heterogeneity of sampling effort, observer abilities,

observing or trapping conditions, trapabilities, and even

local Nt values (as in aggregation) is rampant in

ecological systems. One way to model heterogeneity is

to assume that a sampling effort parameter varies from

sampling occasion to occasion according to some

probability distribution (Pielou 1977). For instance, if

the observed population has a Poisson (kNt) distribu-

tion, and k varies according to a gamma distribution,

then the unconditional distribution for the observed

population is negative binomial (see Pielou 1977,

Boswell et al. 1979). In such models, the variance of

the observed population has a term proportional to N2
t .

The resulting coefficient of variation approaches a

constant for large population sizes; that is, the

coefficient of variation does not vary much with

different Nt values.

The sampling model given by Eq. 3 takes the estimate

of Nt to have a lognormal distribution. The lognormal

sampling distribution is heavy-tailed, right-skewed, and

has a constant coefficient of variation. Thus, it mimics

key features of ecological sampling under heterogeneous

conditions.

Further research

Overall, the REML estimates appeared to have

slightly better statistical properties. However, the scope

of our simulations was limited, and much more

information is needed before blanket recommendations

can be made. The ML and REML estimation methods

should be evaluated for many different parameter

values, and also for different functions of parameters

(such as covariances and first passage quantities) which

might be of specific interest in a population study. Many

such problems left for future investigation could be

studied with computer simulation.
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We did not simulate ML estimation in the nonsta-

tionary case, a topic in which interesting problems are

anticipated. On the one hand, starting the process far

from equilibrium might be expected to improve the

estimation of the density-dependence parameter c,

because c measures the speed of recovery to equilibrium

(see Dennis and Taper 1994, Ives et al. 2003). On the

other hand, the nonstationary case contains an extra

parameter (the initial log population abundance x0),

which consumes information in the data, unless the

parameter value is known.

Estimation of first-passage properties for PVA re-

mains a difficult statistical problem. Even with the

simple exponential growth model with only process

error, the confidence intervals for first-passage quantities

are generally wide (Dennis et al. 1991). The GSS model

represents a way of extending the Dennis et al. model to

incorporate density dependence and observation errors

into PVA. However, the degree of improvements in

estimation that might thereby come from the improved

description of the data are unknown, and should be

studied by simulation. Simple formulas for first-passage

quantities in the GSS model do not exist, so just

obtaining the point estimates of first-passage quantities

involves an additional layer of simulation.

Confidence intervals and hypothesis tests concerning

various parameters (and functions of parameters) can be

calculated with parametric bootstrapping. As well,

parametric bootstrapping might help correct the biases

in the estimates. Parametric bootstrapping is justified

theoretically for any particular parameter estimation

method, provided the parameter estimates are statisti-

cally consistent. In practice, parameter estimates can

require large sample sizes to converge to the true

parameter values. The bootstrapping procedures vary

widely in quality, model by model and case by case. The

statistical qualities of bootstrapping procedures, such as

actual coverage probabilities for confidence intervals,

have yet to be assessed for the GSS model.

Finally, problems related to model selection might

usefully be studied with computer simulations. The GSS

model contains various submodels as special cases,

including stationary or not stationary, density inde-

pendence, process noise only, observation error only,

and various combinations of the deterministic and

stochastic portions. The information-theoretic model

selection indices such as AIC (Sakamoto 1986, Burnham

and Anderson 2002) have been shown effective in

simulations of a variety of model families (for instance,

Hooten 1996). However, each model family is a different

case, and the efficacy of using AIC and its relatives to

choose from among the different special cases of the

GSS model is at present unknown.

CONCLUDING REMARKS

Promising approaches exist for accomplishing the

simultaneous estimation of observation error and

process noise in density-dependent and density-inde-

pendent populations. The approaches have demonstra-

ble, proven usefulness in different ecological contexts.

This paper has added one of the simpler approaches.
The model we describe contains density dependence or

independence, environmental process noise, and lognor-

mal observation error, and the likelihood function for

fitting the model to data can be written in closed form as

the probability density function of a multivariate normal
distribution. The combination of model characteristics

likely represents a minimum level of complexity for

adequately describing a variety of population time series

data sets. The simplicity allows for (relatively) straight-
forward data analysis and could help investigators gain

insights into the statistical properties of more complex

population models. Nonetheless, we were surprised at

the numerical and computational problems lurking

inside the ordinary, single-variable Kalman filter model,
problems which seem to have largely escaped attention

in the voluminous statistical literature on state-space

models.

We set out in this investigation to provide a statistical

solution to the observation error problem that was
accessible to busy empirical ecologists with standard

training in contemporary statistical methods. A key to

the widespread (maybe too widespread) use of earlier

process-error-only models (Dennis et al. 1991, Dennis
and Taper 1994) seemed to be that parameter estimation

could be performed by ordinary linear regression. The

GSS model, a model with the bare minimum of

biological detail, requires attentive analysis, notwith-

standing the fact that the necessary numerical max-
imizations can be performed with a SAS procedure. The

multimodal likelihoods are a challenge for routine data

analysis as well as for writing software to automate

model fitting. Some knowledge of mathematical statis-
tics, stochastic processes, and statistical simulation are

exceedingly helpful for using the GSS model.

We cannot help but remark in closing that the various

population models and contemporary statistical techni-

ques are raising the bar on the level of quantitative
preparation needed by ecologists, empirical and theo-

retical alike, who are seeking to understand population

fluctuations. Judging from the recent literature, concepts

such as stochasticity, covariance, likelihood, first pas-

sage distributions, stationary distributions, prior and
posterior distributions, statistical simulation, and nu-

merical optimization have joined nonlinear dynamics

and stability as permanent parts of the landscape of

ecological understanding (Turchin 2003, Cushing et al.
2003, Hilborn and Mangel 1997). Is training in only

‘‘applied’’ statistical methods, and not in statistical

theory and stochastic modeling, adequate preparation

for ecologists to have confidence in comprehending the
very theories at the heart of our science (Dennis 2004)?
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Miguel Ponciano was partially sponsored by NIH NCRR grant
1P20RR016448–01 through the Initiative in Bioinformatics and
Evolutionary Studies (IBEST) at the University of Idaho.
Subhash R. Lele was supported by the National Science and
Engineering Research Council, Canada. Mark L. Taper was
supported by EPA STAR grant #G9A10014 and by Northwest
Power and Conservation Council grant #PTMM11. David
Staples was supported by Montana Fish, Wildlife and Parks
grant #Z0862 and by Northwest Power and Conservation
Council grant #PTMM11. All of the simulations were
performed using the IBEST computer facilities, including the
Beowulf Oceanus; we thank system administrator Kenneth
Blair for his help to J. M. Ponciano throughout the work.

LITERATURE CITED

Berryman, A. A. 1999. Principles of population dynamics and
their application. Stanley Thomas, Cheltenham, UK.

Bohning-Gaese, K., M. L. Taper, and J. H. Brown. 1993. Are
declines in North American insectivorous songbirds due to
causes in the breeding range? Conservation Biology 7:76–86.

Boswell, M. T., J. K. Ord, and G. P. Patil. 1979. Chance
mechanisms underlying univariate distributions. Pages 3–156
in J. K. Ord, G. P. Patil, and C. Taillie, editors. Statistical
distributions in ecological work. International Co-operative
Publishing House, Fairland, Maryland, USA.

Boyce, M. S. 1992. Population viability analysis. Annual
Review of Ecology and Systematics 23:481–506.

Buckland, S. T., K. B. Newman, L. Thomas, and N. B.
Koesters. 2004. State-space models for the dynamics of wild
animal populations. Ecological Modelling 171:157–175.

Burnham, K. P., and D. R. Anderson. 2002. Model selection
and inference: a practical information-theoretic approach.
Second edition. Springer-Verlag, New York, New York,
USA.

Clark, J. S., and O. N. Bjørnstad. 2004. Population time series:
process variability, observation errors, missing values, lags,
and hidden states. Ecology 85:3140–3150.

Cushing, J. M., R. F. Costantino, B. Dennis, R. A. Desharnais,
and S. M. Henson. 2003. Chaos in ecology: experimental
nonlinear dynamics. Academic Press, San Diego, California,
USA.

Dennis, B. 1996. Discussion: should ecologists become Baye-
sians? Ecological Applications 6:1095–1103.

Dennis, B. 2004. Statistics and the scientific method in ecology
(with commentary). Pages 327–378 in M. L. Taper and S. R.
Lele, editors. The nature of scientific evidence: statistical,
philosophical and empirical considerations. University of
Chicago Press, Chicago, Illinois, USA.

Dennis, B., and R. F. Costantino. 1988. Analysis of steady-state
distributions with the gamma abundance model: application
to Tribolium. Ecology 69:1200–1213.

Dennis, B., R. A. Desharnais, J. M. Cushing, and R. F.
Costantino. 1995. Nonlinear demographic dynamics: math-
ematical models, statistical methods, and biological experi-
ments. Ecological Monographs 65:261–281.

Dennis, B., P. L. Munholland, and J. M. Scott. 1991.
Estimation of growth and extinction parameters for endan-
gered species. Ecological Monographs 61:115–143.

Dennis, B., and M. R. M. Otten. 2000. Joint effects of density
dependence and rainfall on abundance of San Joaquin kit
fox. Journal of Wildlife Management 64:388–400.

Dennis, B., and G. P. Patil. 1984. The gamma distribution and
weighted multimodal gamma distributions as models of
population abundance. Mathematical Biosciences 68:187–
212.

Dennis, B., and M. L. Taper. 1994. Density dependence in time
series observations of natural populations: estimation and
testing. Ecological Monographs 64:205–224.

De Valpine, P. 2002. Review of methods for fitting time series
models with process and observation error and likelihood
calculations for nonlinear, non-Gaussian state-space models.
Bulletin of Marine Science 70:455–471.

De Valpine, P., and A. Hastings. 2002. Fitting population
models incorporating process noise and observation error.
Ecological Monographs 72:57–76.

Dickey, D. A., and W. A. Fuller. 1981. Likelihood ratio
statistics for autoregressive time series with a unit root.
Econometrica 49:1057–1072.

Eiben, A. E., and J. E. Smith. 2003. Introduction to evolu-
tionary computing. Springer-Verlag, New York, New York,
USA.

Eubank, R. L., and S. Wang. 2002. The equivalence between
the Cholesky decomposition and the Kalman filter. The
American Statistician 56:39–43.

Ferrari, M. J., and M. L. Taper. 2006. Using auxiliary data on
measurement error to improve estimates of process variation
in ecological time series. Environmental and Ecological
Statistics. In press.

Fromentin, J.-M., R. A. Myers, O. N. Bjørnstad, N. C.
Stenseth, J. Gjøsæter, and H. Christie. 2001. Effects of
density-dependent and stochastic processes on the regulation
of cod populations. Ecology 82:567–579.

Godambe, V. P. 1960. An optimum property of regular
maximum likelihood estimation. Annals of Mathematical
Statistics 31:1208–1211.

Harvey, A. C. 1993. Time series models. Second edition. MIT
Press, Cambridge, Massachusetts, USA.

Hilborn, R., and M. Mangel. 1997. The ecological detective:
confronting models with data. Princeton University Press,
Princeton, New Jersey, USA.

Holmes, E. E. 2001. Estimating risks in declining populations
with poor data. Proceedings of the National Academy of
Sciences (USA) 98:5072–5077.

Holmes, E. E. 2004. Beyond theory to application and
evaluation: diffusion approximations for population viability
analysis. Ecological Applications 14:1272–1293.

Holmes, E. E., and W. F. Fagan. 2002. Validating population
viability analysis for corrupted data sets. Ecology 83:2379–
2386.

Hooten, M. M. 1996. Distinguishing forms of density depend-
ence and independence in animal time series data using
information criteria. Dissertation. Montana State University,
Bozeman, Montana, USA.

Huzurbazar, V. S. 1948. The likelihood equation consistency,
and maxima of the likelihood function. Annals of Eugenics
14:185–200.

Ives, A. R., B. Dennis, K. L. Cottingham, and S. R. Carpenter.
2003. Estimating community stability and ecological inter-
actions from time-series data. Ecological Monographs 73:
301–330.

Kitagawa, G. 1987. Non-Gaussian state-space modeling of
nonstationary time series (with discussion). Journal of the
American Statistical Association 82:1032–1063.

Knight, K. 2000. Mathematical statistics. Chapman & Hall/
CRC, Boca Raton, Louisiana, USA.

Lindley, D. V. 1990. The 1988 Wald memorial lectures: the
present position in Bayesian statistics (with comments).
Statistical Science 5:44–89.

Lindley, S. T. 2003. Estimation of population growth and
extinction parameters from noisy data. Ecological Applica-
tions 13:806–813.

Link, W. A., and J. R. Sauer. 1997. Estimation of population
trajectories from count data. Biometrics 53:488–497.

Link, W. A., and J. R. Sauer. 1998. Estimating population
change from count data: application to the North American
Breeding Bird Survey. Ecological Applications 8:258–268.

BRIAN DENNIS ET AL.340 Ecological Monographs
Vol. 76, No. 3



Littell, R. C., G. A. Milliken, W. W. Stroup, and R. D.
Wolfinger. 1996. SAS system for mixed models. SAS
Publishing, Cary, North Carolina, USA.

Manly, B. F. J. 1997. Randomization, bootstrap and Monte
Carlo methods in biology. Second edition. Chapman and
Hall, London, UK.

Mayo, D. G. 1996. Error and the growth of experimental
knowledge. University of Chicago Press, Chicago, Illinois,
USA.

Meyer, R., and R. B. Millar. 1999a. Bayesian stock assessment
using a state-space implementation of the delay difference
model. Canadian Journal of Fisheries and Aquatic Sciences
56:37–52.

Meyer, R., and R. B. Millar. 1999b. BUGS in Bayesian stock
assessments. Canadian Journal of Fisheries and Aquatic
Sciences 56:1078–1087.

Millar, R. B., and R. Meyer. 2000a. Non-linear state space
modeling of fisheries biomass dynamics using the Metropolis-
Hastings within-Gibbs sampling. Applied Statistics 49:327–
342.

Millar, R. B., and R. Meyer. 2000b. Bayesian state-space
modeling of age-structures data: fitting a model is just the
beginning. Canadian Journal of Fisheries and Aquatic
Sciences 57:43–50.

Myers, R. A., and N. G. Cadigan. 1993a. Density-dependent
juvenile mortality in marine demersal fish. Canadian Journal
of Fisheries and Aquatic Sciences 50:1576–1590.

Myers, R. A., and N. G. Cadigan. 1993b. Is juvenile natural
mortality in marine demersal fish variable? Canadian Journal
of Fisheries and Aquatic Sciences 50:1591–1598.

Newman, K. B., S. T. Buckland, S. T. Lindley, L. Thomas, and
C. Fernández. 2006. Hidden process models for animal
population dynamics. Ecological Applications 16:74–86.

Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson.
1978. Statistical inference from capture data on closed animal
populations. Wildlife Monographs 62.

Peterjohn, B. G. 1994. The North American Breeding Bird
Survey. Birding 26:386–398.

Pielou, E. C. 1977. Mathematical ecology. John Wiley, New
York, New York, USA.

Pollard, E., K. H. Lakhani, and P. Rothery. 1987. The
detection of density-dependence from a series of annual
censuses. Ecology 68:2046–2055.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. 1992. Numerical recipes in FORTRAN: the art of
scientific computing. Cambridge University Press, Cam-
bridge, UK.

Reddingius, J. 1971. Gambling for existence. A discussion of
some theoretical problems in animal population ecology.
Acta Biotheoretica 20 (Supplement):1–208.

Reed, W. J., and C. M. Simons. 1996. Analyzing catch-effort
data by means of the Kalman filter. Canadian Journal of
Fisheries and Aquatic Sciences 53:2157–2166.

Robbins, C. S., D. Bystrak, and P. H. Geissler. 1986. The
Breeding Bird Survey: its first fifteen years, 1965–1979.
Resource Publication 157. U.S. Fish and Wildlife Service,
Washington, D.C., USA.

Rohatgi, V. K. 1976. An introduction to probability theory and
mathematical statistics. John Wiley, New York, New York,
USA.

Rotella, J. J., J. T. Ratti, K. P. Reese, M. L. Taper, and B.
Dennis. 1996. Long-term population analysis of Gray
Partridge in eastern Washington. Journal of Wildlife
Management 60:817–825.

Sakamoto, Y., M. Ishiguro, and G. Kitagawa. 1986. Akaike
information criteria statistics. D. Reidel, New York, New
York, USA.

Schnute, J. 1994. A general framework for developing
sequential fisheries models. Canadian Journal of Fisheries
and Aquatic Sciences 51:1676–1688.

Searle, S. R., G. Casella, and C. E. McCulloch. 1992. Variance
components. John Wiley and Sons, New York, New York,
USA.

Shenk, T. M., G. C. White, and K. P. Burnham. 1998.
Sampling-variance effects on detecting density dependence
from temporal trends in natural populations. Ecological
Monographs 68:445–463.

Sibly, R. M., D. Barker, M. C. Denham, J. Hone, and M.
Pagel. 2005. On the regulation of populations of mammals,
birds, fish, and insects. Science 309:607–610.

Solow, A. R., and K. Sherman. 1997. Testing for stability in a
predator-prey system. Ecology 78:2624–2627.

Staples, D. F., M. L. Taper, and B. Dennis. 2004. Estimating
population trend and process variation for PVA in the
presence of sampling error. Ecology 85:923–929.

Staudenmayer, J., and J. P. Buonaccorsi. 2005. Measurement
error in linear autoregressive models. Journal of the
American Statistical Association 100:841–852.

Sullivan, P. J. 1992. A Kalman filter approach to catch-at-
length analysis. Biometrics 48:237–257.

Turchin, P. 2003. Complex population dynamics: a theoretical/
empirical synthesis. Princeton University Press, Princeton,
New Jersey, USA.

Walker, A. M. 1960. Some consequences of superimposed error
in time series analysis. Biometrika 47:33–43.

APPENDIX A

Proofs of statistical properties of the density-dependent (Gompertz) and density-independent state-space models (Ecological
Archives M076-012-A1).

APPENDIX B

An annotated SAS program for calculating parameter estimates for the Gompertz state-space model, along with annotated
output (Ecological Archives M076-012-A2).

August 2006 341DENSITY DEPENDENCE STATE-SPACE MODEL



Ecological Archives M076-012-A1

Brian Dennis, José Miguel Ponciano, Subhash R. Lele, Mark L. Taper, David F.

Staples Estimating density dependence, process noise, and observation error. 2006. .

Ecological Monographs 76:323-341.

Appendix A.  Proofs of statistical properties of the density dependent (Gompertz) and

density independent state space models.

I.  Kalman recursion relationships

 The derivation of the recursion relationships for calculating the likelihood

function is based on a well-known property of the bivariate normal distribution.  Suppose

the random variables  and  are jointly distributed as bivariate normal, with means \ ] .\

and , variances  and , and covariance .  We write. 5 5 5] \]\ ]
# #

” • Œ 7” • ” •\
]

µ BVN , . (A.1).
.

5 5

5 5
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]

\
#

\]

\] ]
#

The property gives the conditional distribution of , given , as normal with mean\ ] œ C

. 5 5 . 5 5 5 5\ \] ] \] \]] \ ]
# # #" "

 C  � � � � � � and variance .  We write

\ ] œ C µ  C  ¹ Š ‹ˆ ‰ ˆ ‰� �N  ,   . (A.2). 5 5 . 5 5 5 5\ \] ] \] \]] \ ]
# # #" "

The conditional mean is the familiar expression for the regression of  on  for\ ]

bivariate normal observations.

Case 1:  initial population arises from stationary distribution.

 The Gompertz state space model (Eqs. 2 and 3 in the paper) defines the (log-

scale) population process  and the observation process We first consider the case in\ ]> >.  

which the initial value  of the population process is assumed to arise from the normal\!



stationary distribution.  Thus we have

\ µ! ! !
#N , , (A.3)ˆ ‰. <

with mean  and variance  given by. <! !
#
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 The derivation occurs in five steps.  First, we obtain the joint bivariate normal

distribution of  and .  Second, we obtain the normal distribution of , conditional\ ] \! ! !

on .  Third, the normal distribution of , conditional on , is obtained.] œ C \ ] œ C! ! " ! !

Fourth, the joint bivariate normal distribution of  and , given , is established.] \ ] œ C" " ! !

Finally, the joint distribution from step four yields the marginal normal distribution of ,]"

given , along with the recursion relationships for obtaining the conditional mean] œ C! !

and variance of  from those of .] ]" !

 The first step of the derivation is to obtain the joint distribution of  and \ ] Þ! !

Observe that  and  are a linear transformation of the bivariate normal (and\ ]! !

independent) random variables  and :  , and . Thus,  and\ J \ œ \ ] œ \  J \! ! ! ! ! ! ! !

] 7! ! jointly have a bivariate normal distribution.  The mean and variance, denoted   and

@ ]! !, of , are seen to be

E , (A.6)� �] ´ 7 œ! ! !.

V . (A.7)� �] ´ @ œ ! ! !
# # #< 7

Writing  and substituting into the covariance expression]  œ \   J! ! ! ! !. .

E  helps establish that the covariance of  and  is just thec d� �� �\  ]  \ ]! ! ! ! ! !. .

variance of :\!

Cov , . (A.8)� �\ ] œ! ! !
#<
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 The second step is to establish the conditional distribution of  given .\ ] œ C! ! !

From the bivariate normal property (Eq. A.2), and from noting that , we< 7! !
# # #œ @ 

find that
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 The third step is to obtain the form of the conditional distribution of  given\"

] œ C \ œ +  -\  I! ! " ! ".  Noting from Eq. 2 that , and noting from Eq. A.10 the

conditional mean and variance of , we easily find that\!
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It also follows, from the conditional normal distribution of , that the distribution of \ \! "

given  is normal with mean and variance given by Eqs. A.11 and A.12.] œ C! !

 The fourth step is to establish the joint distribution of  and , given .\ ] ] œ C" " ! !

Because  given  has a normal distribution, the joint distribution of  and ,\ ] œ C \ ]" ! ! " "

given , is easily obtained with the procedure used to obtain the joint distribution] œ C! !

of  and .  Writing  and  as a linear combination of  and  (i.e., \ ] \ ] \ J \ œ \! ! " " " " " "

and ), it follows that] œ \  J" " "

E , (A.13)Š ‹¹ ” •� �] ] œ C ´ 7 œ œ +  - 7  C 7
@ 

@
" ! ! " " ! ! !

!
# #

!
#.
7



V , (A.14)Š ‹¹] ] œ C ´ @ œ  œ -  
@ 

@
" ! ! " "

# # # # # # #!
# #

!
#< 7 7 5 7
7

Cov , . (A.15)Š ‹¹\ ] ] œ C œ" " ! ! "
#<

The joint distribution of  and , given , is bivariate normal, because  and\ ] ] œ C \" " ! ! "

] \ J" " " are linear combinations of  and .  We write
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 Everything is now in place for step five and the main results.  We see that Eq.

A.16 gives the marginal distribution of , given , as normal with mean  and] ] œ C 7" ! ! "

variance :@"
#

] ] œ C µ 7 @" ! ! " "
#¹ ˆ ‰N , , (A.17)

where  and  are related to  and  through the formulas A.13 and A.14.  As well,7 @ 7 @" !" !
# #

Eq. A.16 provides, through the bivariate normal property (Eq. A.2), the distribution of

\ ] œ C" " ", conditional on  and The conditioning on  is carried along] œ C Þ ] œ C! ! ! !

automatically because the joint distribution represented by Eq. A.16 is conditioned on

] œ C! !.  One repeats steps two through four above, using  and  in place of  and\ ] \" " !

] 7 @ 7 @! " !" !
# #,  and  in place of  and , etc. (basically, just incrementing all the subscripts

upward by 1).  Through this process, one arrives at the normal distribution of , given]#

] œ C" " and ] œ C 7 @ ]! ! # ##
#.  The conditional mean, , and conditional variance, , of 

turn out to have the same dependence on 7 @ 7 @ 7 @" " !" " !
# # # and  that  and  have on  and 

(Eqs. A.13 and A.14).  Thus we find that
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where the mean and the variance are obtained through the recursion relationships7 @> >
# 

given by
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with the recursions initiated at , 7 œ +ÎÐ"  -Ñ @ œ! !
# c d� �5 7# # #Î "  -  .

 Eqs. A.18-A.20 form the results (Eqs. 5-7 in the paper) used for building the

likelihood function for the observations.  Eqs. A.19 and A.20 are the Kalman recursions

(corresponding to Eqs. 6 and 7 in the paper).  Eqs. A.18-A.20 yield the normal pdf

(paper, Eq. 8) for the observation  conditioned on the observation history ]> ] œ C>" >",

] œ C ÞÞÞ ] œ C 7 @># ># ! ! ! !
#, , N , .  The additional pdf (paper, Eq. 9) arising from the � �

distribution of  is incorporated in the likelihood function (paper, Eq. 10).]!

Case 2:  initial population does not arise from stationary distribution.

 If population monitoring commenced before the population reached stationarity,

one can assume that the initial population is a fixed, but unknown, constant .  TheB!

derivation for the non-stationary case differs in the details about how the process is

started up.  For the non-stationary case, the derivation alters Eqs. A.3 to read:

Pr 1 , (A.21)c d\ œ B œ! !

with the mean  and variance  of  given by. <! !!
# \

.! !œ B , (A.22)

<!
# œ 0 , (A.23)

instead of by Eqs. A.4 and A.5.  Also,  and  are found from  through:] \ B! " !

] œ B  J! ! ! , (A.24)

\ œ +  -B  I" ! " . (A.25)



From Eq. A.24, we see that  has a N( , ) distribution with  and .] 7 @ 7 œ B @ œ! ! ! !! !
# # #7

In particular,  and  are independent (because  and  are independent), and the] \ J I! " ! "

conditional distribution of  given  is just the unconditional normal distribution\ ] œ C" ! !

of , found from Eq. A.25:\"

\ ] œ C µ" ! ! " "
#¹ N( , ) , (A.26). <

with  and .  Note that the relationships given by Eqs. A.11 and. < 5" ! "
# #œ +  -B œ

A.12 for the dependence of  and  on  and  are valid for this nonstationary case.. < . <" !" !
# #

The rest of the derivation, establishing the joint distribution of  and  given ,] \ ] œ C" " ! !

then the distribution of  given , and so on, follows exactly as in the stationary] ] œ C" ! !

case above.

II.  Multivariate normal likelihood function

 Here we derive the full multivariate normal likelihood function for the univariate

time series of observations , , ..., .] ] ]! " ;

Density dependent model, stationary case

 Under the AR(1) model (paper, Eq. 2), it is well-known that the true population

abundances , , ...,  have a joint multivariate normal probability distribution (that\ \ \! " ;

is,  is a Gaussian process).  Let , , ..., \ \ \ \> ! " ;X œ c dw, the population abundances

collected into a 1 1 column vector.     Ð;  Ñ ‚ The mean vector for contains identicalX

elements equal to the mean, , of the stationary distribution when the initial+ÎÐ"  -Ñ

population size  arises out of the stationary distribution.  The variance-covariance\!

matrix has diagonal elements equal to the stationary variance 1 , and the off-D 5# #Î  -� �
diagonal element in row  and column  is 1 .  i j c d5# # 43Î  - -� � k k These results are readily

demonstrated by writing  as a linear transformation of independent, normallyX



distributed random variables in the vector , , , ..., .  Iteration of Eq. 2E œ \ I I Ic d! " # ;

(paper) establishes that

X g CEœ +  , (A.27)

where
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the vector X g Ch has a multivariate normal distribution with mean vector a  and

variance-covariance matrix .  The matrix multiplications simplify when carried outC CG w

algebraically.  Thus

X jµ
+

 -
MVN , ,

1
Š ‹D (A.33)
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and j is a 1 1 vector of ones.Ð;  Ñ ‚

 Now let .  Eq. 3 is equivalent to writingY œ c d] ] ]! " ;, , ..., w

Y X Fœ  , (A.35)

where F 0 I 0 Iµ MVN , , with   being a column vector of zeros and  being the identity� �7#

matrix.  Therefore,

Y m Vµ MVN , , (A.36)� �
where 1  and   With  denoting the column vectorm j V I yœ +Î  - œ Þc d� � D 7#

c dC C C! " ;
w, , ...,  of recorded data, the likelihood function is written as the pdf of a

multivariate normal distribution:
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"

#

Eqs. A.36 and A.37 embody the multivariate normal likelihood for the observations

(paper, Eqs. 14-17).

Density dependent model, nonstationary case ( fixed at \ B! ! )

 The derivation of the multivariate normal for the case of fixed initial condition

follows the structure of the stationary case, with some redefinitions of notation.  Define

X X" " as the 1 vector of population abundances without the initial abundance:   ; ‚ œ

c d\ \" ;, ..., w
" ".  Define as well the vector  without the initial population abundance:  E E

œ I I Ic d" # ; ", , ..., .  Then by iterating Eq. 2, one finds that  is a linear transformationX



of independent, normally distributed random variables:

X g h C E" " " ! " "œ +  B  , (A.38)

where the vectors , , and the matrix  are given byg h C" " "
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Because

E 0 I"
#µ MVN , , (A.42)ˆ ‰5

the vector X g h" " " ! has a multivariate normal distribution with mean vector a  and B

variance-covariance matrix .5#
" "

wC C

 Now let , the vector of observations with the initial observationY"
wœ c d] ]" ;, ..., 

deleted.  The model for the observations (paper, Eq. 3) can be rewritten in vector form as

Y X F" " "œ  , (A.43)

where F 0 I"
#µ ; ‚MVN ,  is 1.  Therefore,� �7
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Because normal( , ), and is independent of , the vector ] µ B œ! !
#7 ] ]" ;, ..., Y

c d] ] ]! " ;, , ..., w has a multivariate normal distribution:
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where now , ,  is 1 1 , withm g h V I Iœ +  B œ  Ð;  Ñ ‚ Ð;  Ñ!
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and with  being a column vector of zeros.  Carrying out the laborious matrix operations0

produces the expressions for the elements of  and (Eqs. 18, 19, and 20 in the paper).m V 

Density independent model

 With the density dependence parameter  appearing throughout the variance--

covariance matrix of the density dependent model, it is not surprising that the model of

density independence (Eqs. 21 and 3 in the paper) has an entirely different covariance

structure.  Because the density independent model does not have a stationary state, the

only case is that of the initial condition fixed and unknown.

 Iterating the density independent process model (paper, Eq. 21) easily produces

\ œ B  +>  I  I  â  I> ! " # > . (A.49)

Define  X" as the 1 vector of population abundances without the initial abundance:; ‚

X E E" " " " # ;
wœ œ I I Ic d c d\ \" ;, ..., .  Define as well the vector as , , ..., .  Then one can

write Eq. A.49 in matrix form as

X j C j C E" ! " " "œ B  +  , (A.50)



where the vector  is a 1 vector of 1's, and the  matrix  is given byj C; ‚ ; ‚ ; "
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the vector X j C j" ! " has a multivariate normal distribution with mean vector  andB  +

variance-covariance matrix .5#
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wC C

 Now let .  The observation model (paper, Eq. 3) is equivalent toY"
wœ c d] ]" ;, ..., 

writing
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#µ ; ‚MVN ,  is 1.  Therefore,� �7
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#7 ] ]" ;, ..., Y

c d] ] ]! " ;, , ..., w has a multivariate normal distribution:

Y m Vµ MVN , , (A.55)� �
where now , ,  is 1 1 ,  is 1 1, andm j C j V I I jœ B  + œ  Ð;  Ñ ‚ Ð;  Ñ Ð;  Ñ ‚! #
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with  being a column vector of zeros.  Carrying out the matrix operations produces Eqs.0

24, 25, and 26 for the elements of  and .m V



III.  Differences

 The forms of the multivariate normal likelihoods for the differenced observations,

under the density dependent and density independent models, are obtained here.

Density dependent model, stationary case

 The differences,  ( 1, 2, ..., ), are a simple linear[ œ ]  ] > œ ;> > >"

transformation of the observations, and so the multivariate normal distribution of the

differences is readily obtained.  Let W œ [ [ [c d" # ;
w, , ..., .  It is evident that

W DYœ , (A.58)

where , , ..., Y œ c d] ] ]! " ;
w, and

D œ

" " ! â !
! " " â !
ã ã ã ä ã
! ! ! " "

Ô ×Ö ÙÖ Ù
Õ Ø

(A.59)

is a 1  matrix.  The multivariate normal distribution of the observations is given; ‚ Ð;  Ñ

in Eq. A.36;  the linear transformation in Eq. A.58 produces

W 0µ MVN , ,� �F (A.60)

where F D Dœ D I DÒ  Ó7# w, with  given by Eq. A.34.  The matrix multiplications,

written out, yield Eqs. 27-30 in the paper.  The likelihood function for the observations

A œ C  C A œ C  C A œ C  C" " ! # # " ; ; ;", , ...,  is the pdf of a multivariate normal

distribution with zero mean vector:

P - œ ˆ ‰ 8 9� � k k Œ 7, , exp , (A.61)
1 1

2 2
5 7

1

# # "
;Î# "Î#F

Fw ww

where w œ A A Ac d" # ;
w, , ..., .



Density independent model

 The derivation for the joint distribution of the differences is similar to the density

dependent case.  The multivariate normal distribution of , , ..., Y œ c d] ] ]! " ;
w for the

density independent model is listed in Eqs. A.55, A.56, and A.57, with the definitions of

m V and  given in the accompanying text.  The transformation to first differences is

W DY D Dm jœ œ +Þ, where  is the matrix in Eq. A.59.  The mean vector becomes The

distribution for  becomesW

W j DVDµ +MVN , . (A.62)� �w
The expressions in the paper (Eqs. 31-34) for the means, variances, and covariances of

the differenced observations are obtained by writing out the matrix multiplications in Eq.

A.62.

 The second differences, Y œ [ [ > œ ;  "> > >+1  ( 1, 2, ..., ), are in turn a linear

transformation of the first differences.  Letting U œ c dY" # ;", , ..., Y Y w, it is evident that

U DW U Dj 0œ + œ +.  The mean vector of  is , and so the parameter  is eliminated,

producing Eq. 35.  The distribution for  isU

U 0 DDVD Dµ MVN , . (A.63)� �w w

The expressions for the variances and covariances of the second differences (paper, Eqs.

36-39) result from the matrix multiplications.
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Appendix B:  An annotated SAS program for calculating parameter estimates for the 
Gompertz state-space model, along with annotated output. 
 
/*--------------------------------------------------------------------------*/ 
/*       PARAMETER ESTIMATES FOR THE GOMPERTZ STATE SPACE MODEL             */ 
/*  SAS program to calculate parameter estimates for the Gompertz state-    */ 
/*  space model, using time series population abundance estimates.  The     */ 
/*  GSS model is given by                                                   */ 
/*        X(t) = a + cX(t-1) + E(t)                                         */ 
/*        Y(t) = X(t) + F(t)                                                */ 
/*  where X(t) is the natural logarithm of population abundance N(t)        */ 
/*  (assumed unknown), Y(t) is the observed value of X(t), E(t) has a       */ 
/*  normal distribution with mean 0 and variance sigmasquared, F(t) has     */ 
/*  a normal distribution with mean 0 and variance tausquared (with no      */ 
/*  auto- or cross-correlations in E(t) and F(t)), and t is time.  Unknown  */ 
/*  model parameters are a, c, sigmasquared, tausquared.  Data to be        */ 
/*  input into the program consist of observed or estimated population      */ 
/*  abundances O(0), O(1), O(2), .., O(q) (estimates of N(0), N(1), etc.),  */ 
/*  along with the values of t.  The program currently does not accomodate  */ 
/*  missing observations.                                                   */ 
/*                                                                          */ 
/*  Program transforms data to logarithmic scale:  Y(t) = ln[O(t)].  The    */ 
/*  program recasts the model as a linear mixed model with:  (1)  repeated  */ 
/*  measures on one subject having an AR(1) covariance structure, and (2)   */ 
/*  a random effect due to time (considered as a categorical variable).     */ 
/*  The random effect represents the extra variance component due to ob-    */ 
/*  servation error and produces a "nugget" (augmented main diagonal) in    */ 
/*  the var-cov matrix for the observations.                                */ 
/*                                                                          */ 
/*  The example data are from the North American Breeding Bird Survey       */ 
/*  (record # 0214332808636, American Redstart), and correspond to Table 1  */ 
/*  and Figure 1 of Dennis et al. (200X).                                   */ 
 
options nocenter; 
data in; 
input observed time; 
y = log(observed); 
cards;    
 18 0 
 10 1 
  9 2 
 14 3 
 17 4 
 14 5 
  5 6 
 10 7 
  9 8 
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 4 25 
11 26 
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 9 28 
 6 29 
; 
proc mixed  method=ml alpha=.05 noitprint noinfo data = in; 
 
/*  Restricted maximum likelihood (REML) is the default estimation method  */ 
/*  in PROC MIXED (SAS System for Windows Version 9.1).  Delete "method=   */ 
/*  ml" (or substitute "method=reml") in list of options in the above      */ 
/*  "proc mixed" statement for REML estimation if desired.  Also, the      */ 
/*  value of alpha, for asymptotic 100(1-alpha)% confidence intervals for  */ 
/*  parameters, be changed in the option list.                             */ 
 
 
class time; 
model y= ; 
random time; 
repeated / type=ar(1) subject=intercept; 
estimate 'intercept' intercept 1; 
 
run; 
quit; 
/*-------------------------------------------------------------------------*/ 
 
 
 
/*-------------------------------------------------------------------------*/ 
/*           ANNOTATED OUTPUT OF THE GSS ESTIMATION PROGRAM                */ 
/*                                                                         */ 
/*  The following output was generated using SAS/STAT software, Version    */ 
/*  9.1 of the SAS System for Windows. Copyright (c) 2002-2003 SAS         */ 
/*  Institute Inc.  SAS and all other SAS Institute Inc. product or        */ 
/*  service names are registered trademarks or trademarks of SAS Institute */ 
/*  Inc., Cary, NC, USA.                                                   */ 
 
The SAS System 
 
The Mixed Procedure 
 
             Class Level Information 
 
Class    Levels    Values 
 
time         30    0 1 2 3 4 5 6 7 8 9 10 11 12 
                   13 14 15 16 17 18 19 20 21 22 
                   23 24 25 26 27 28 29 
 
 
                   Covariance Parameter Estimates 
 
Cov Parm     Subject      Estimate     Alpha       Lower       Upper 
 
time                        0.2315      0.05     0.08439      1.7944 
AR(1)        Intercept      0.7934      0.05      0.1859      1.4010 
Residual                    0.2625      0.05     0.08314      3.9119 
 
/*  In the "Estimate" column, the value listed for "time" is the estimate  */ 
/*  of tausquared, for "AR(1)" is c, and for "residual" is                 */ 
/*  sigmasquared/(1 - c*c) (the stationary variance of X(t)).  "Lower"     */ 
/*  and "Upper" columns give boundaries of asymptotic 95% confidence       */ 
/*  intervals for the parameters, based on inversion of the information    */ 
/*  matrix (Hessian of the log-likelihood).  The CIs have unknown coverage */ 
/*  properties for small- and moderate-lengthed time series.  The CI for   */ 
/*  c, along with the large value of the stationary variance upper bound,  */ 
/*  might suggest that the density independent model (c=1) is a viable     */ 
/*  model for the data.  A SAS program to fit the density independent      */ 
/*  state space model was provided as a supplement to Staples et al.       */ 



/*  (2004).                                                                */ 
 
 
           Fit Statistics 
 
-2 Log Likelihood                57.0 
AIC (smaller is better)          65.0 
AICC (smaller is better)         66.6 
BIC (smaller is better)          70.6 
 
/*  These "fit statistics" can be used for model selection, in comparison  */ 
/*  to other models fitted to the data.                                    */ 
 
                           Estimates 
 
                         Standard 
Label        Estimate       Error      DF    t Value    Pr > |t| 
 
intercept      1.9021      0.2645      29       7.19      <.0001 
 
/*  The estimate listed for "intercept" is the estimate of a/(1-c), the    */ 
/*  stationary mean of X(t).  The "Standard Error" is an asymptotic        */ 
/*  estimate based on the information matrix.  The t-test for the null     */ 
/*  hypothesis that a/(1-c)=0 is nonsensical in the context of the model.  */ 
/*                                                                         */ 
/*  Thus for the example BBS data, the ML parameter estimates are:         */ 
/*                                                                         */ 
/*             tausquared = 0.2315                                         */ 
/*             c = 0.7934                                                  */ 
/*             sigmasquared = 0.2625*(1 - c*c) = 0.09726                   */ 
/*             a = 1.9021*(1-c) = 0.3930                                   */ 
/*                                                                         */ 
/*  Compare with ML estimates, Table 1, Dennis et al. (200X).  Small       */ 
/*  numerical differences are due to roundoff error in SAS.                */ 
/*-------------------------------------------------------------------------*/ 
 
 
/*-------------------------------------------------------------------------*/ 
/*                           REFERENCES                                    */ 
/*                                                                         */ 
/*  Dennis, B., J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F.         */ 
/*    Staples.  2006.  Estimating density dependence, process noise, and   */ 
/*    observation error.  Ecological Monographs 76:323-341.                */  
/*                                                                         */ 
/*                                                                         */ 
/*  Staples, D. F., M. L. Taper, and B. Dennis.  2004.  Estimating         */ 
/*    population trend and process variation for PVA in the presence of    */ 
/*    sampling error.  Ecology 85:923-929, with supplement in Ecological   */ 
/*    Archives E085-025-S1.                                                */ 
/*                                                                         */ 
/*-------------------------------------------------------------------------*/ 




