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Abstract

Methods to design a sampling strategy should depend on the research question involved when conducting the experiment. The
objective of this study is to design a seed trap configuration surrounding a parent plant when the long distance component of the
seed dispersal kernel is of interest. In particular, as a population’s invasion speed depends mainly on the tail of the dispersal kernel,
the sampling design in this study is based on calculating this quantity. The optimality criterion is to minimize the mean squared
error (MSE) of the estimated invasion speed (using a limited number of traps) with respect to the “true” calculated invasion
speed. Detailed procedures are given on how to calculate an invasion speed, both in a 1D and a 2D setting, with examples on
how to implement the method to get a local optimal sampling strategy @Sifigna vulgaris as a test system. Results show
a trade-off between nearby sampling (many seeds, no long-distance dispersal measured) and distant sampling (few seeds, bu
long-distance dispersal measured).
©2005 Elsevier B.V. All rights reserved.
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1. Introduction rapidly when huge numbers of seeds are being dis-
persed over long distances from the parent plant. The
Dispersal is an important strategy for species sur- spread rate can be used as a measure of invasiveness
vival (Murray, 1986) Establishment of speciesin their and can be calculated using information on the tail
new environment affects ecosystem’s dynamics by of the dispersal kernéKot et al., 1996; Lewis et al.,
its influence on, e.g. biodiversitfMalanson, 1996)  2005)
and competition(Jesson et al., 2000; Matsinos and Although work has been done to assess short dis-
Troumbis, 2002)Vegetation, in particular, can spread tance dispersdlongejans and Telenius, 200&xper-
imental studies on measuring the tail of distribution
"+ Corresponding author. Tel.: +31 30 2743711; kernels are rare. Still, se@reene and Johnson (1995,
fax +31 30 2744434, 1996) for long-distance wind dispersal research of tree
E-mail address: annemarie.pielaat@rivm.nl (A. Pielaat). seeds. See aldtaradis et al. (2002), Nurminiemi et al.
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(1998) and Tackenberg (2003for some methods to  cult computationally, hence we use a sequential design

analyse dispersal data. where seed traps are added one at a time. Although se-
Adispersal kernet(x) is a probability density func-  quential sampling does not result in a global optimal
tion associated with moving distaneén a single dis- design, it does ensure that each additional seed trap is

persal event. Knowledge of the dispersal pattern of placed at the locally optimal location of the remaining
seeds from a parent plant and growth and survival of open sites, and thus approximates a global optimum.
these individuals at new sites gives insightinthe spread  The first step in obtaining a good sampling design
rate of vegetation at population level. In this paper, we is knowledge about the true dispersal kernel. As this is
will focus on the sampling design for estimating veg- unavailable, a useful approach requires an initial guess
etation spread into a new environment based on seedon the dispersal kernel obtained from field data on, for
counts in traps surrounding a single point source. ltwill example, a related species. The sampling design is then
be shown that measurement of the “tails” of the disper- based on this initial estimate for the true kernel with the
sal kernels in the field plays a dominant role in the esti- idea of subsequently getting step by step improvement
mation of the population spread, but that optimal sam- towards an optimal design from repeated field experi-
pling effort as a function of distance from the source ments.
plant involves a trade-off between nearby sampling By way of example, our analysis will be based on
(many seeds, no long-distance dispersal measured) andvork by Bullock and Clarke (200Q)who measured
distant sampling (few seeds, but long-distance disper- dispersal for the heather pla@tlluna vulgaris in the
sal measured). field. Heather plants have very light seeds which are
Accurate field measurements are a prerequisite to dispersed by wind over long distances. As the bushes
understand the mechanisms behind long distance seegroduce many seeds, this is a good plant to study seed
dispersal. A good sampling design is important to dispersal. With this species, an accurate long distance
achieve this goal. An optimal spatial sampling design dispersal pattern can be measured inthe field. In this pa-
for studies on pollen dispersal was givenAgsun&o per, we will first calculate the spread rate®fvulgaris
and Jacobi (1996)Their interest was in the shape of from the preliminary studies oBullock and Clarke
the dispersal curve. The kernel was estimated by a his- (2000)on the approximate shapes of dispersal kernels.
togram, based on observed counts of individuals in the This so called “true” spread rate will then be used to de-
field. The optimal sampling design, in that case, min- termine a sequential seed trap configuration when only
imized the error in estimating the shape of the kernel. alimited number of seed traps is available and gaining
This is equivalent to minimizing the area of the differ- insight in the tail of the dispersal kernel is our goal.
ence between the continuous dispersal curve and the First, we show how to calculate an invasion speed
histogram estimator. As a consequence, their designwith an example on using seed dispersal data to cal-
resulted in concentrating samples near the parent plantculate the speed. Then, the sampling design problem
where most of the seeds fall. However, their algorithm will be defined with a step-by-step approach on how
is not applicable when the invasion speed of organ- to implement the method of sequential sampling based
isms is of interest, and information on long-distance on the preliminary calculated invasion speed. Subse-
dispersal events, as described by the tails of the dis- quently, a detailed explanation of the procedure to ac-
persal kernels, is crucial. A different approach which tually get the sampling design with detailed steps using
emphasizes the measurement of the long distance com-seed dispersal as an example will be given followed by
ponent of the spatial spread in the field, is presented in results for the specifi€. vulgaris test system under
this paper. Our sampling design is based on getting the consideration. Our goal is to provide a “user guide” for
best estimate for the invasion speed of species whenfuture applications of this method. A better insight in
only limited information on the seed dispersal kernel the long distance component of the dispersal pattern in
is available from seed trap data. The design will consist the field is the basis for the development of mechanistic
of placing seed traps at several distances from a par-models for ecological processétemerik et al. (2004)
ent plant such that the mean squared error (MSE) of for example, stress the need for knowledge on the dis-
the estimated wave speed with respect to the true wavepersal behaviour to predict the expansion velocity of
speed is minimized. Such global optimal design is diffi- the western corn rootworm into Europe. An improved
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Table 1 sities into a habitat in which it has not previously been
Variables used in the procedures to obtain an optimal sampling design grown, the assumption of density-independent popula-
in this study tion dynamics is justified. We can, therefore, assume a
population whose densityj at location ) changes in

Variable  Explanation

c(s) Theoretically derived true wave speed from the dispersal time (t) through reproduction and dispersal following;
kernelk(x) ~

cnls Assumed “true” wave speed calculated from the his-

© togram dispersal kernthFEx) Nia(x) = / k(x = y) Ro Ni(y) dy, 1)

cn(s) Expected “true” wave speed calculated using multiple -
histogram dispersal kernels whereRg > 1 represents the basic reproductive num-

cn(s) Estimated average wave speed from limited seed trap ber (the number of Offspring produced by one parent
data organism which survive at least until the next reproduc-

k(x) True dispersal kernel . . .

kn(x) True dispersal kernel in the form of a histogram T{IOI’I tmg(Heesterbeek, 2002)The funCtlon]f(x —)

fa(x)  Estimated dispersal kernel from limited field datain the IS the dispersal kernel describing the relative frequen-
form of a histogram cies of distances traveled (fromto x) as individu-

M(s) Moment generating function (MGF) for the dispersal  als disperse within one time step. This model assumes
kernel,k(x)

separate growth and dispersal events and discrete non-

M (s) Moment generating function (MGF) for the histogram . . .

dispersal kerneky (x) overlappmg generations, although it also can be qsed
Ro Basic reproductive number to approximate growth and dispersal when generations
s Total number of seeds over all sampling distances overlap. Repeated application of K@) describes the
Dy Thenth sampling distance with respect to the source  expected spatial distribution of individuals as time pro-
L; The furthest sampling distancgswith respect to the

gresses from one time step to the next. The spatial
spread ofV,(x) describes spread of the invading popu-

lation. We consider an invading population whose lead-
sampling design would also help in the development ing edge is described by an exponentially decreasing

source in a field with length

of models in the field of risk assessmé¢hewis et al., function
1996; Reshetin and Regens, 200 at is, a good in- o
sightin spatial spread associated with the dispersion of Ni(x) =be™™, ()

pathogenic and/or genetically modified microbes is of | harey, represents the population density at paint
major importance to build models in cases where sam- 4 4t some given time

pling needs to be limited from a hazard perspective.
The general discussion will give some considerations
on how to apply this method to other systems.

To help reading through the procedures in this paper Ni+1(x) = N;(x —¢) and so 3
a summary of the most frequently used variables is y, 4(x) = he @), (3)
given inTable 1

If organisms move forward with a constant distance
¢ at each point in space)( then

Fig. 1demonstrates visually the population dynam-
ics formulated by Eqs(2) and (3) Substituting Egs.
2. The theory of calculating invasion speeds (2) and (3)in Eq. (1) gives
o0
2.1. Spread in one spatial dimension be (=9 = [ N k(x — y) Robe ™ dy. 4)

A full derivation of the theory of one-dimensional Changing variables to = x — y andx yields
invasion speeds can be foundKet et al. (1996) To Csx ase -0 —s(r—u) (_
be able to follow the arguments in this paper, however, eret =R fogo k) e_ (=d)
only a general insight in the theory is required. = Ro [ k(u) e~ e du
Consider a population that is in the initial stage of 5,4 hence
the spread into a habitat as part of the design of a field
experiment. As the plantis beingintroducedinlowden- € = RoM(s). (6)

()
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Nt = b exp (-s x)
- - N(t+1) = b exp {-s (x—c))

Distance (x)

Fig. 1. Assume the number#/Yin a population to decrease with
exponentially bounded tails as the distaneeffom the source in-
creases. And, each time step the population progresses with a con-
stant speedd] (Egs.(2) and (3).

Here,
oo

e = [

is the moment generating function (MGF) for the dis-
persal kernek(u). This defines a dispersion relation
between the speedand the wave steepnesas

k(u) € du

]

()

8

Eq.(8) indicates a relation between the shape of the
wave and the invasion speed that involves the MGF of
the dispersal kernel. That is, an invasion speg¢d#n
be calculated for every slope) (of the wave (Eq(8)).
However, typically, the initial distribution of the invad-
ing plant will not decline exponentially, as described
by Eg. (2). Rather, it will be confined to some finite
region.Weinberger (1982proved rigorously that, for
such initial distributions, the asymptotic spread rate of
the population is given by the minimum valuedgf):

c(s) = % IN(RoM (5)).

c= I;Tllgl {i In(RoM(s))} . 9
This argument was explained heuristicallyfogt et al.
(1996)

Note that the moment generating function (EQ)
gives exponentially increasing weight to the tails of the
dispersal kerneéd. Hence, the moment generating func-
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tion is defined only for exponentially bounded func-
tions. Given exponentially bounded tails, the “fatter”
the tails, the larger the moment generating function for
any givens and the larger the value afin (9) and
thus the faster the invasion process. When the tails of
the dispersal kernel are not exponentially bounded, ac-
celerating invasions, with infinite asymptotic speeds,
result(Kot et al., 1996)

2.2. Spread in two spatial dimensions

Typical spread for a plant species will occur in two
spatial dimensions, rather than the one spatial dimen-
sion assumed above. Analysis for the case of 2D spread
is given in detail inLewis et al. (2005) Here, it is
assumed that dispersal need not be symmetric in all
directions, but that it is translationally invariant (i.e.
does not vary from one location to the next). The ker-
nel k(x) describes the probability density associated
with dispersingx; units east and» units north. It is
then possible to calculate the spread rate for a “planar”
wave front. The “planar” wave front refers to a well
established invasion process, which has progressed
to the point where one can approximately divide in-
vaded and uninvaded locations with a straight line in
x1, x2, space which is perpendicular to a unit vector
describing movement in directiom. The formula for
the asymptotic rate of spred#l) remains unchanged,
but the formula for the moment generating function
is now

M(s) = /_ : /_ Z k(u)el* "™ du.

This is equivalent to calculating the moment generat-
ing function of a one dimensional kernel, which is the
marginal distribution of an initial dispersal kernel in
2D given byk(x). To see this observe

M(s) = [0 [[°2, k(u)dn] €€ de.
= [°0 ku(&)es dg,

(10)

(11)

where &é=u-w,p=u-wt and ky(£) =
[°5, k(u)dn. Thus, integration ofk(x) in the di-
rection perpendicular to the population spread
results in the 1D marginal distributioky,(¢), and
this kernel can then be used to calculate the MGF in

Eq. (7).
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3. Calculating invasion speeds in practice

3.1. Invasion speed from seed trap data

209

front can be calculated from field data in a similar way
as described above forthe 1D case. Thatis, calculate the
marginal distribution of the initial 2D dispersal kernel

to get the MGF (see Sectidh2, Eq.(11)) and use its

When the dispersal kernel of seeds is unknown, but result in Eq.(14) to calculate the invasion speed.
their densities are being sampled by seed traps at var-

ious distances from a source plant, one natural distri-

bution to employ is the histogram

k() = {fi: if&_1<x<§g

0, otherwise
wherek;,(x) is the histogram for the distribution of
seeds from a parent plant at locatioe= 0 in a field of
length 2, and f; is the relative frequency of seeds on
the interval with end points;_1, &;. Here, the firstand
last histogram points ag,, = —L andé., = L. We
assume thaty(x) is the “true” histogram describing

for —L <|x| <L

(12)

3.2. Monte-Carlo methods

Suppose we have an estimate for the dispersal kernel
k(x). How do we calculate the corresponding invasion
speed:? Analytical or numerical integration of the ker-
nel is one choice to calculate the MGF (Eg)) needed
to calculatec. However, in higher dimensions Monte-
Carlo simulation is easier to apply. For example, any
arbitrary probability density functiok(x) can be ap-
proximated by forming a histogram derived of many
independent and identically distributed (i.i.d.) random
samples fronk.

When k(x) describes dispersal in two spatial di-

dispersal of a population of seeds. When we estimate mensions, its marginal distribution in directisncan

kp(x) from limited field data we write, (x).

be approximated by a histograin(z), wherez is the

In order to calculate an invasion speed using the his- signed distance in directiom by the following proce-

togram (Eq(12)) for the dispersal kernel, its moment
generating function has to be derived first, that is

Lj

i) = 1Y flexnbe) - expbsi 1) (13)
i=1

This moment generating function is used®to yield
a speed of
1
cp = micr)1 { In(Rth(s))} . (14)
5> S

Here, the index: indicates that the dispersal kernel

dure. To do this, first generate many i.i.d. random sam-
ples fromk. Then, for each random sample, calculate
& = x - w. Lastly, generate a histogram of thealues

and use Egqg(13) and (14)o give the spread raig,.

This method is used in Secti@?2where the expected
spread rate;, is a Monte-Carlo estimate @f While
Monte-Carlo methods give inexact solutions they are
simple to use and accurate enough for the question at
hand.

4. “Optimal” sampling design for seed dispersal

is taken to be a histogram. Of course, the histogram

(Eg. (12)) does not exactly describe the true distribu- As the following procedures apply to an optimal
tion of seeds in a field, and the histogram assumption configuration of seed traps in the field, assumptions
can introduce some small bias in the calculation of aboutthe physical field characteristics have to be made
the wave speed due to the arbitrary chosen number ofexplicit first. As a first approach, we assume the field

“bins” (Clark et al., 2001)However, simulations show
that, given at least 20 “bins”, such bias is extremely
small relative to errors arising from uncertainty asso-
ciated with having very few observations in the tail of
the dispersal kernel. Thus, this bias is of little practi-
cal significance when designing field studies. For the
remainder of this paper, this source of bias is ignored.

When field data consists of seed counts on a lattice,

is a flat terrain without any major vegetation growth
and no predominant wind direction. The experimental
set-up consists of a source of one or more parent plants
bunched together as a single point source surrounded
by seed trapsin one or more wind directions (e.g. north—
east, south—east, south—west and north—west). Collect-
ing data from the field results in number of seeds per
seedtrap (i.e. per surface area) at various distances from

a 2D wave speed can be obtained. The 2D planar wavethe source.
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4.1. Optimality criterion Of course, lack of information on the true spread rate
¢ hampers our ability to calculate the bias. However,
4.1.1. An estimate for the invasion speed from the expected spread ratg (Section3.2) allows us to

limited field information minimize an approximation to the MSE
The first step into calculating an invasion speed from

field data is to have a general insight in the reproduc- MSE = Var(@,) + (E(&x) — cn)>. (16)

tion and dispersal pattern of the test species. The next

step is then to link these population characteristics to 4.7.2. Practical considerations with an

an invasion speed. Following the assumptions in Sec- gpplication to seed dispersal

tion 2, the calculation actually only needs two inputs The ideal seed trap configuration would consist of
(see Eqgs(12)—(14), that is, placing a maximum number of traps that fitin each tran-
sect surrounding the source plant (i.e. divide the length
of the transect by the diameter of a seed trap to get this
maximum number). However, filling all the transects
‘with the maximum number of seed traps would, from
a practical point of view, be impossible in most cases.
From a trapping efficiency viewpoint, seed traps were
chosen to be 10 cm in diameter and four transects were
used each with a length of 100 m. This means a max-
imum of 1000 seed traps would fit in each direction,
whereas a manageable number appeared to be at most

1. Rp: basic reproductive number
2. kj(x): histogram of dispersal distances

This means that the extent of species invasiveness de
pends on the number of seeds that will germinate the
next growing season at sites they were dispersed to
from a parent plant.

If we knew the true spatial distribution of seeds from
a parent plant, then we could immediately calculate the

spread rate of the population usin and no field A o
P hop g €9 300 per transect. Therefore, the optimality criterion is

sampling would be necessary. ) . . )
Here, we consider the case where we do not know f[o define the locations of at most 300 traps in the field

the precise form of the dispersal kernel covering the in such away that the mean §quared error @4)

long distance component. However, we assume Someof the estimated average invasion speed Wlth?red}’Jced
preliminary sampling has been done which provides number of seed trquh, .W'th respect. o the trug

us with preliminary estimates for the dispersal kernel calculated average invasion s_p_ee_d using the maximum
spread rate, (14). The error in these estimates de- number of seed traps;, IS m|n|_m|z_ed. F_zesult_s will
pends on the level of preliminary sampling. However, show how much more mform.atlon IS galn.e-.d, l.e. how
for reasons explained in Secti8rl, this source of bias much the MSE decreased, with each additional placed
is ignored for our test system and so we proceed as if seed trap.

¢, were the “true” wave speed. In the example given
in Sectionb, the quantityc;, represents the average of
wave speeds;, generated by Monte-Carlo methods.
Here, each wave speed calculationdpused Eq(14)

whereM, was based on the histogram generated by the ~ Ed- (14) shows that, in order to calculate a “true”
Monte-Carlo Simulation (Sectic8.2). wave speed, an initial guess on the distribution of seeds

We now ask how to distribute seed traps in sub- OVer a whole field transect has to bede (Eq. (12)).

sequent sampling efforts so that we can use this new HOWever, the number of seeds found in a particular
data to most closely estimate the “true” expected spread seed trap will differ for separate dispersal events (i.e.

rate. We assume that this subsequent sampling gives aH‘rorI] year to year). So, the first step into designing
estimate for the expected spread rate, d;e.Close- an “optimal” seed trap configuration is the generation

ness to the “true” expected spread rate is achieved of various data sets representing th&ially assumec.l
through minimizing the mean squared errorcgf i dispersal pattern of. vuigaris over a transect using

other words, our goal is to minimize the variance plus the histogram of Eqc12). With those sEatiaI distribu-
bias squared tions a “true” expected wave speag ) can be calcu-

) 5 ) . 5 lated Fig. 29. Then the “optimal” design procedure
MSE = E(cp — ¢)* = Var(cy) + (E(r) —¢)*.  (15) (Fig. 2b includes the following steps: (i) start with an

5. The procedure: dispersal in 1D
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a- How to obtain the ‘true’ average wavespeed

Dispersal kernel, k(x) |q— / i <4— S=Ap(aexp(-BD:) +D:’)
Do Dy

l No. of seeds following pdf
Make a histogram, k,, (x) of ¢¢¢¢¢¢¢
the dispersal kernel > MC-methods | ]
> 1000 data sets
Do Dy I

‘True’ average wave speed

—» Cp

b- How to obtain the sequential sampling design

No. of seeds following pdf

1- Fill field (1D) with initial
number of seed traps > ¢ ¢ ¢

uniformly from Dy to Dy

MSE —x

Recalculate the 1000

data sets from a,now

Dy, D, having limited seed
? counts

— 2- Add seed trap to first open|__y,. L
site

Average wave speed ¥ C;

3- Move seed trap to next
open site and follow
calculations in step 2

Repeat step 3 untilC,and its MSE is calculated for all left open sites

4- Allocate seed trap to site
with smallest MSE

L_|Repeat from step 2 until all seed traps are
placed at local optimal site

Fig. 2. Schematic representation of calculating a “true” average spread,ré and the sequential sampling design (b). (MC-methods refers
to the Monte-Carlo simulations as described in Sec3i®)

initial limited number of seed traps over the sampling to the calculated “true” expected wave speed.({iii)
domain. (i) Find the location of the next trap in such a The sample location resulting in the smallest MSE is
way that the mean squared error of the now estimated the location of the next seed trap in the field. (iv) This
average wave speed (i®.)is minimized with respect  process should then be repeated until the maximum
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number of samples that can be taken from a practical spread rate;, and repeat this many times to calculate a
point of view are assigned to a location. A summary of mean spread rate which is taken to be the “true” spread
the procedure is given iRig. 2band will be explained ratecy,.

in more detail in the next two sections. To calculate the “true” invasion speed fdf.
vulgaris both Ry and the distribution of seeds in the

5.1. Calculating the “true” spread rate, cp, for C. field (Eq.(14)) have to be known. From a Lefkovitch

vulgaris matrix model Ry was found to be approximately

2. One thousand data sets were used to generate

Recently,Bullock and Clarke (20003ampled dis- histograms representing seed dispersal, following the

persal ofC. vulgaris seeds over distances up to 80m €mpirical equation (Eq(17)) (Bullock and Clarke,
2000) This equation can be extended to

s {Z,fil S0, = Yonl1 AD,(@€XPB(Ds +2) + ¥(Dy +2)7*), forz < D, <100m

. (18)
0, otherwise

using field traps. They summarized their data with an 1h€ expressiona(exp(-AD,) + yDx") in Eq. (18)

empirically derived probability density function of the ~ 9ives the number of seeds found at distare (n
form =1, 2, ... total number of sampling distances ;)

from the edge of the source)( The parameters,
k() = {TA (0e P2 4y (x+2)7), z <x <100m B, v and p (p > 1) describe the shape of the seed
o, otherwise distribution. in order to get long tails in the dispersal
curve. Multiplying this expression with the sample
area at distanc®,, Ap,, results in the total number of

whereT represents the total sample area at distance S€eds trapped at some distance from the souige,

x, anda, B andy are positive parameters. The variable Summing the number of seeds found at all distances,
z represents the edge of the point source and disper-2 = 1. 2, ..., L}, results in the total number of seeds
sal of seeds beyond 100 m was not measured. For theover all sampling distances, Values for the separate
purpose of this discussion we assume no seeds disperséerms in this study were found from literature and
further than 100 m (see discussion later in this section). from this particular field set-uprble 2.

The power function-—” decreases much more slowly Seed traps were 10 cm in diameter in this study and
than e#* for largex. Thus, the term—° accounts for ~ ©Only one trap was used per distance, 4, is con-

the long-distance component of the dispersal pattern. Stant (i.e. 854 x 10~ m?) at each distance. The sam-
Although this model lacks a mechanistic basis, terms Pling domain (from—L to L) stretched over an area
scaling like &#* occur in simple mechanistic dispersal  ©f 40,000 n% which made the furthest sampling dis-

17)

models(Neubert et al., 199%nd the term—* also ap- tance from the edge of the source in the center of the
pears when the spatial spread of seeds is derived fromfield to be 100 m. This means a maximum of 1000 seed
the physics on wind flow pattern@kubo and |evin, tl’apS fitted in each d|rect|0n, l.e.= 1, ey 1000. As
1989.

f Table 2

Of, course, when §ome initial pgramgtrlc form o Parameter values and variables used for(E8)in this study (based
the dispersal kernel is known, an invasion speed can ,,gyjiock and Clarke (2009)

be estimated using Eq9) instead of using the his-
togram estimator as presented in Sectibh How-
ever, oftenlimited field data is all we have. There-

Parameters and variables Value

10876
7.854x 1073 m?

fore, rather than constructing a histogram of their raw L,I-)" 1000
dispersal data (which is not published in their paper), « 72 % 10P
we mimic the process of field sampling by generat- 5 8.42
ing 10,876 i.i.d. dispersal distances using @), use 1 50368

this to form a histogranFig. 4), calculate a histogram ~ °
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no predominant wind direction is assumed, the aver- The expected invasion speeg, for C. vulgaris from

age values over Tables 1-3 fradBullock and Clarke the 1000 generated histograms was calculated to be
(2000)were used for the parameterss, y andp as an cn = 358cmyear?.

initial approximation. Finally, the total numbe, was

calculated to be 10,876 seeds being caught in the seed.2. The sequential sampling design

traps. This calculation was based on having the first

trap being placed at the edge of the bush, i.e. having As a starting point towards the sequential sampling
D,, = D, + 0.5m, since the bush was 1 m in diameter. procedure, a limited number of seed traps=(100)

As heather bushes may produce different seed dis- were evenly spaced over the sampling region (i.e. in a
persal patterns in separate experiments, 1000 separatéine from the source plant up to the end of the domain
data sets were generated from Etg) using Monte- with length L). Then, seed traps were added sequen-
Carlo methods and stored as histograms following tially. The location of each new seed trap was chosen so
Eqg. (12) to simultaneously being used for optimiza- astominimize the MSE as givenin E46). This meant
tion purposes. That is, each data set was simulated us-that for every following seed trap, an entire distribution
ing a random generator together with the inverse CDF of averagec;, values was calculated corresponding to
method, applied to the cumulative distribution function every possible location of the new seed trap. In other
of Eq.(18), to assign a deposition sit¢o each released  words, for every possible new location, joint with the
seed. This means 10,876 numbers between 0 and lalready occupied sites, an averag@/as calculated us-
were generated representing the seeds that were blowring the histogram formulas (Egd.2)—(14) applied to
into the field from the heather bush. Then the seed trap the 1000 generated data sets (see SeétiynThe dif-
distanceD,, each seed would fly in was calculated fol- ference with calculating @, is that now the histograms
lowing the CDF extracted from the PDF (i.e. E48)). used to calculate;,”consisted of limited information,
As the sampling domain is restricted to some distance i.e. having seed counts only at sites where seed traps
from the source, one should be aware that some seedsare available.
will always fly out of the domain. Simulations showed A detailed step-wise procedure for obtaining a se-
that, in this case, about 10 seeds would travel further quential sampling design is given &ppendix Band
than 100 m, i.e. 0.1% of the total number of “released” is visualized in Fig. 21).
seeds. As wind is assumed to be uniform in all directions,

The next step towards an “optimal” sampling de- the resulting location of the seed traps (following the
sign was to first calculate the expected “true” speed procedure inAppendix B) can be put in any transect
(cn, Eq.(14)) of the traveling wave evolving from the  opposite to the parent plant.
application of Eq(18) for the histogram of seed dis-
persal. That is, a speed when all possible locations,

Dy, ..., Dg;, of the domain in a 1D setting are filled 6. The procedure: dispersal in 2D
with seed traps continuously.

Fig. 2agives an overview of how to obtain the “true” The procedures presented up until now are based on
expected wave speed. A detailed description of the pro- 1D analysis, whereas, of course, seeds are being spread
cedure is given il\ppendix A in 2D. This section describes two possible methods on

The data sets generated using the CDF method how to proceed when an optimal design is to be ob-
(Appendix A and Fig. 29 on the continuous func-  tainedtakinga 2D spread into account. The first method
tion (Eg. (18)) were saved in the form of a histogram  will show how the sampling algorithm can be changed

needed to describe the dispersal kernel (@8)). In relatively easily to allow for aggregation of seed traps,
this study, the transect was dividediia= 100 inter- meaning to allow for more than one seed trap at the
vals each having a length of 1 m andse= 10 seed same distance from the source. More than one seed
traps were incorporated in an interval frdm 1 to &;. trap can be placed at the same distance from the source

Generated data sets with a number of seeds at each disby filling adjacent sites along the circumference for
tanceD,, (Eq.(18)) were distributed over the intervals a certain radius. In addition to this, a more elaborate
in order to get the histogram for the dispersal kernel. change will show how to make a sequential sampling
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design when the marginal distribution is derived from y 1)
the dispersal kernel (E¢L8)).

6.1. Aggregation of seed traps v

Bullock and Clarke (2000)ised a sampling design w (1,0 v bn
where the number of seed traps increased with dis- " J/ x(1,0)
tance from the source. The algorithm presented in this —— M

study so far, however, only allows for at most one

seed trap at each distance from the source. Therefore,
their sampling design could never be verified using

an optimal design based on invasion speeds. To test
whether the design would change towards a more ag-
gregated form of pot placement similar to the design

by Bullock and Clarke (200Qthe procedure was ad- Eig. 3. Schematic representatigr_l of caICL_JIating a ma}rginal distribu-
justed to allow for more than one seed trap at any tion (D, = r cosp)) of seeds originally being spread in 2D.
distanceD,. More specific, it means that instead of

decreasing the number of open sites with increasing

number of placed pots, the number of available sites example, have seeds being spread in Hy.(3).
stays constant (i.e. the maximum available) from the And, assume the wave front is represented by a vector
start until the end of the procedure. The algorithm w = (1,0). Then, integrating ovey will result in a

for sequential sampling as presented in SecBdh distribution kernel, which is now a kernel in 1D again
will only change with respect to the number of places With seeds being redistributed in the direction of the
tested for each new seed trap. Whereas seed traps wer#ave front Fig. 3). This distribution kernel will differ
only placed at open sites in the 1D setting, now all qualitatively from the original model used iBullock
sites will be tested for each additional seed trap. This and Clarke (2000)Eqg. (18)). That is, an increased
results, in this case, inT(—¢) is 200x 1000 sites proportion of the original number of released seeds
to be tested to find the sampling design instead of will be deposited aDg (because of spread parallel to
testing 900x 899 x 898 x - -- x 700 sites in the 1D  the wave front) and, therefore, not contribute to the

case. wave speed at all. In addition, the effect of including
an angle in the deposition will increase towards
6.2. Applying the marginal distribution the end of the domain. The ultimate distance being

spread from the source (in 1D) will decrease relatively
Not only the distance a seed is spread, but also its di- more for seeds that were initially deposited far from
rection becomes important when an optimal sampling the source than for those that were deposited close
design is based on invasion speeds in 2D. That is, whenby (in 2D) due to the application of the marginal
a seed is spread parallel to the wave front this seed distribution.
does not add anything to the invasion speed no mat-  This theory can be applied to seed dispersal by cal-
ter how far it is being spreadr{g. 3). Subsequently,  culating a marginal distribution in the direction to
when the angle of spread with respect to the wave front find the dispersal of heather seeds from a point source.
increases up to 90downwind, its contribution to the ~ First step is to transform the 1D model (E#8)) into a
wave speed increases to a maximum. Therefore, the2D model, i.e. writeD,, in terms of a £, y) coordinate.
wave speed should be a weighted function of the an- So,
gle under which seeds are being deposited from the
source. B
One approach to account for a weighted wave §= ZSr = ZAY(“ exp=pr) +yr7)
speed is calculating the marginal distribution of seed r=1 r=1
deposition in the direction of the wave front. For forr < 100, (29)

Lj Lj
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wherer = /x2 + y2. So, r is the distance from the
source where seeds are depositeidy.(3). However,
now having an actual position in a 2D plane assigned
to it. With § = 10,876 seeds being released from the
source and knowing the distanfy each seed travels
(see Section5.1), anx, y coordinate can be assigned
to each seed. Seeds will be randomly distributed in
the field if no predominant wind direction is assumed.
That is, drawS random numbers between 0 ang 2
representing the angleg)(assigned to each distance
D, inorder to getaccompanying values folrhenx =
r cosf) andy = r sin@). And sox = D, = r cosp)
will give the marginal distribution of seeds in 1D when
the wave front is parallel to thedirection.

The calculations then follow the procedure as ex-
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plained in the previous sections and lead to an expectedFig. 5. Optimal seed trap location using histogram&) (Eq. (12))

wave speed;, of 152 cmyear?.

7. Results
7.1. Dispersal in 1D
Fig. 4 shows one of the histogranis,(x), for seed

dispersal used to obtain an optimal sampling design
in 1D. The histogram is generated from the dispersal

Average seed numbers

HW“MWWWWWWWW nnnnnn o
20

40 60 100
Distance(m)

Fig. 4. One of the 1000 seed dispersal kerniglér) (Eq. (12)) for

the original field data oBullock and Clarke (2000ysing Eq.(18)

and parameter values frohable 2 Note that the scale of theaxis

has been setto an upper limit of 10 in order to visualize seed numbers
atall distances. The first two bars (2 m) actually account for over 95%
of the dispersed seeds.

representing the original field dataBfillock and Clarke (2000gnd
Ro = 2. The dashed line indicated the frequency of the initial 100
equally spaced pots.

kernel fitted byBullock and Clarke (2000pr field data

of C. vulgaris (Eq. (18) andTable 9. Note that most

of the 10,876 released seeds were deposited near the
source and that the first two bars (corresponding to the
first two meters) irFig. 4actually, on average, account
for 10,812 of the dispersed seeds.

The optimal location of seed traps wh€rnvulgaris
seeds are dispersed from a point source is shown in
Fig. 5. That is, the optimal placement of an extra 200
pots on top of an initial uniform distribution of 100
pots (indicated by the dashed line kig. 5 over a
1D domain of 100 m. The optimal design is based on
implementing the dispersal pattern as showfim 4
and anRg of 2 in Eq.(14) followed by a minimization
of the MSE with respect to the “true” wave speed in
this setting.

The seed trap configuration iRig. 5 can be ex-
plained both from a mathematical and biological point
of view. As the tail of the distribution kernel gives the
most information on invasiveness of species a majority
of the seed traps should be put there. From a biological
viewpoint it is known that the probability of finding
a seed is very small at the very edge of the domain.
Therefore, it is better to sample a little closer to the
source so both qualitative and quantitative information
is guaranteed.

Figs. 6 and &how the change in the components of
the MSE (Eq(16)) when the field is being filled with
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Fig. 6. Estimated average wave spegd¢m year?) approaching
the “true” average wave speeg (358 cmyear?!) with increasing
number of placed seed traps when the original field daBudbck
and Clarke (2000andRp = 2 is used.

seed traps giving rise to the optimal seed trap configura-
tion of Fig. 5. The figures show that there is a trade-off
between having a small bias of the estimajpaind de-
creasing the variance of When it comes to choosing
the best site for the next pot. In other words, a trade-
off between precision and accuracy of the estimator.
The relatively big increase in the bias@fWwhen plac-

ing pot number 71, 89 and 17&if. 6) is apparently

— MSE
Var

0.5 '
0

100 150
Pot number

200

Fig. 7. Decrease in the mean squared erroPjan¢;, with respect
to ¢, and change in the variance af With increasing number of
placed seed traps when the original field datBollock and Clarke
(2000)and Ry = 2 is used.
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overcompensated with a decrease in the &/l or-

der for the MSE to still decreaskig. 7. The relatively
large decrease in the variance:pfor these pots corre-
sponds to placing a seed trap close to the source (i.e. at
60, 50 and 30 cm, respectively, not shown). Therefore,
the estimated wave speegl dropped with respect to
the “true” wave speed;, but apparently gave rise to a
significant decrease in Vay(J in order for the MSE to
decrease.

7.2. Dispersal in 2D

Allowing for aggregation of seed traps, i.e. the pos-
sibility of placing more than one seed trap at the same
distance from the source plant, did not change the op-
timal sampling design shown irig. 5. This indicates
that spreading seed traps over more distances is pre-
ferred over aggregation when 300 seed traps are to be
placed in a field where a maximum of 1000 would fit
in 1D.

Calculating the marginal distribution from an initial
seed dispersal in 2D when a random wind frequency
distribution was applied resulted in the histogram
representing the dispersal pattern in 1D as shown
in Fig. 8 Note the change in scale on theaxis
for this figure compared t&ig. 4, indicating a seed

0.9
0.8
207
g
306
e}
D 0.5
© 04
()]
© 03
0.2

0.1

mmmw’_ﬂfﬁﬂﬂfﬂ%ﬂ?ﬁ-mm I
20 40 60
Distance (m)

0 80 100

Fig. 8. One of the 1000 seed dispersal kernglér) (Eq. (12)) for

the field data oBullock and Clarke (2000applying the marginal
distribution to Eq.(19) with a random wind frequency distribution.
Note that the scale of theaxis has been set to an upper limit of 1 in
order to visualize seed numbers at all distances. The first three bars
(3m) actually account for over 95% of the dispersed seeds.
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Fig. 10. Estimated average wave spegd¢myear?!) approach-

. Hep i ! ! ing the “true” average wave speegl (152 cmyear?) with increas-
when the marginal distribution to E(L9) with a random wind fre- ing number of placed seed traps when the marginal distribution to
quency distribution is applied arh = 2. The dashed line indicates Eq. (19) with a random wind frequency distribution ams = 2 is

the frequency of the initial 100 equally spaced pots. used.

Fig. 9. Optimal seed trap location using histogramg) (Eq.(12))

dispersal pattern which is concentrated even closer to 18
the source. This resulted in a left shift in the optimal 1 g} ]
sampling designKig. 9). As very few seeds are being T
dispersed at larger distances, a sample effort near the'4/ Var 1
source is preferred over seed traps at relatively long , ,|
distances. Catching the tail of the seed dispersal kernel
means putting seed traps relatively close to the source 1
where the probability of finding a seed is actually ~_

significant. o T —

Figs. 10 and 1khow the statistics resulting in the g ]
pot configuration presented yig. 9. In general, the
algorithm chose to put subsequent seed traps further -4
away fr_om the source (not showr_1) causing f[he bias of 0.2 ‘
the estimator;, to decrease relatively mor€&if). 10 0 50 Potiomber 200
than its variance to increase in order to still have a
decrease in the MSHE(g. 11).

The application of the 1D model (E¢17)) com-
pared to using a 2D model (E{L9)) shows clear dif-
ferences in the preliminary calculated “true” invasion
speed;,. That is, the 1D model results in a “true” in-
vasion speed of 358 cm yedr(Fig. 6), a value which
is more than twice as high than the true invasion speed
calculated from the 2D model, which is 152 cm yehar Long-distance seed dispersal is a relatively rare
(Fig. 10. event during a plant’s stage of seed spread. As most

The general pattern of seed trap configuration did seeds will be deposited close to the parent plant, the
not change in any of the simulations when different probability of finding a seed in field experiments de-
values ofRg in the range from 1 to 10 were tested. creases with distance from the source due to spatial

Fig. 11. Decrease in the mean squared errofj@fi;, with respect
to ¢;, and change in the variance af With increasing number of
placed seed traps when the marginal distribution to(E@) with a
random wind frequency distribution arth = 2 is used.

8. Discussion
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aspects. Still, it is those long-distance dispersal eventsEq. (12) can be applied directly to create a histogram.
which facilitates plants to invade into new habitats and, Then, the method of bootstrapping can be used to
therefore, enhance species survival. As a consequencegenerate multiple data sets to be used for further
a statistically well justified sampling design is of major calculations.
importance when gaining information on these highly The procedure for sequential sampling as described
unpredictable tails of a dispersal pattern from field ex- in this paper reveals why this method is actually sub-
periments is the study objective. optimal. To find the optimal sampling design in this
The calculation of a species’ invasion speed empha- setting the procedure should calculate the MSE;of ~
sizes what happens in the tail of a dispersal kernel. A with respect ta;, for all possible site combinations in
sampling design based on this population characteris- which ¢ seed traps could be placed in the field. That
tic is therefore an obvious approach. This calculation is, comparing the MSE af,,"with respect ta;, for all
has the additional advantage that it only requires gen- [ ¢ . . o
eral insights in the growth and redistribution dynam- <Lj) possible seed trap location combinations. As
ics of the population (expressed Ry and a dispersal  this is a computationally impossible task a suboptimal
kernelk(x) for the spatial spread, respectively). After algorithm of sequential sampling is used. In this case,
the actual field experiment the sampling design can be the MSE of¢j, with respect ta;, for all (L; — (r + 1))
adjusted according to improved insights into the pop- left locations is calculated each time a new seed trap is
ulation dynamics. Moreover, the simulations for this placed in the field.
study revealed that the sampling design is generally =~ The MSE of the estimatar,”is used as the actual
insensitive to arRg in the range of 1-10. statistic for the optimal pot configuration. This statistic
Typical parametric dispersal kernels include the has two components; the variance of the estimator
Gaussian, and Laplace (back-to-back exponential) ker- (Var(é,)) and its bias £(¢,) — ¢). This means that
nels. Use of the histogram to calculate wave speedswith the attempt of approaching the “true” expected
gives an added advantage over typical parametric de-wave speed, when searching for the optimal position
scriptions ofk(x) when the precise shape of the disper- of the next pot in the field, also minimizing the error
sal kernel is not known a priori. Although this method of E(¢;) with respect to theX ¢, values calculated
will not work if the data collector had no idea whatso- from the X generated dispersal histograms plays an
ever of the distribution of dispersal distances, yet the important role in the optimal design. For this reaspn ~
histogram formulation allows for a high level of flexi- does not approach), continuously inFig. 6, but drops
bility in the shape of the kernel. Indeed, the histogram when the algorithm chooses to put a pot close to the
can be considered to be a parametric formulation with source in order to obtain a relatively larger decrease in
a high number of. ; parameters, one corresponding to  the varianceKig. 7). This means that although empha-
each “bin heightf; . This high number of parameters ~ Sis is put on calculating a “true” wave speegl, from
allows one to accurately depict the shape of the tail of limited field data, still the algorithm makes sure that
the dispersal kerneKot et al. (1996%how that simple  the variability in the actually estimated wave speed,
parametric (one or two parameter) kernels used to cal- ¢, with this limited information is minimized. From
culate spread rates can introduce significant bias in the a practical viewpoint this demonstrates that, while the
wave speed estimates. In the example showkoinet “tails” of the dispersal kernel can play a dominant role
al. (1996) speeds varied by an order of magnitude when in the estimation of population spread, in actual fact
different parametric forms were fitted to classic insect optimal sampling effort, given a fixed number of seed
dispersal data fronDobzhansky and Wright (1943)  traps involves a trade-off between nearby sampling
Related issues, including a non-parametric estimator (many seeds, no long-distance dispersers) and distant
are discussed i@lark et al. (2001) sampling (few seeds, long-distance dispersers). This
In this paper we apply Monte-Carlo methods to trade-off occurs because minimizing the mean squared
create multiple seed dispersal histograms. For the error (bias squared plus variance) of the estimator
Monte-Carlo simulations we used the dispersal kernel requires a balance between accuracy (which comes
fitted to field data byBullock and Clarke (2000) from accurately measuring the tails) and the precision
(Eq.(18)). However, when only field data are available (which comes from having a large enough sample size).
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Furthermore, the trade-off between precision and accu- and, therefore, on the thickness of the tail towards the
racy meant that the sequential sampling design assignsend of the sampling domain. Therefore, a slight spread
no seed traps (beyond the initial baseline level) to the of samples about the main sample effort to catch the

furthest dispersal distances ($&gs. 5 and  In other

tails is needed to still gain enough information for fur-

words, given the finite number of seed traps, sampling ther analysis.

of the tails of the dispersal kernels beyond 100 m is
insignificant.
Although using invasion theory to obtain an opti-

mal sampling design has a solid basis from a statis-

tical viewpoint, experimental drawbacks will always
exist. That is, gaining insight into the tail of a distri-
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all the information in the tail. As a consequence, the
estimated wave speed), iS compared to a “true” wave

speed¢;, on a restricted domain. The sampling design Appendix A. Calculation of the “true” expected
will, therefore, always only be an approximationforthe wave speed

real optimal seed trap configuration on an “infinite” do-

main. Of course, it depends on the shape of the initially 1. Make a histogramk;(x) (Eq. (12)), of the pre-

assumed distribution kernel how far the domain should

be extended and, with that, the introduced sampling er-

ror will depend on the population’s dispersal pattern. In
this case, using E18) as the initial dispersal kernel,

only 10 out of about 10,000 released seeds traveled out

of the domain L = 100 m), i.e. about 0.1% calculated
from simulations.

In addition,Figs. 6 and 18how the huge difference
in the calculated “true” wave speeg when dispersal
in 2D is considered compared to dispersal in 1D. The

populationinvades less than half as fastin the 1D versus

the 2D case. Alsdrig. 10shows a relatively huge gap
between, andc;, compared téig. 6. Apparently there

is not enough seed traps used to be able to capture the

little information in the tails needed to reach an invasion
speed of 152cmyeat (Fig. 8). As more seeds are

found at long distances from the source in a 1D setting
(Fig. 4) less seed traps have to be put at long distances

to still be able to capture the tail of the dispersal kernel
and so the gap betweep andc;, is less Fig. 6). This
statistical error (as arising from a finite sample size)
will decrease when the sample si¥éncreases. In that

case, the “variance” component of the mean squared

error will approach zero.

Based on this study, an optimal sampling design to
catch the tail of dispersal kernels involves sampling to-
wards the end of the domain. However, sampling effort
should depend on the amount of information gained

liminary known dispersal kern&lx) using Monte-

Carlo methods, i.e.

(a) Derive the cumulative distribution function
(CDF) for the kernek(x). This results in a func-
tion which outcomeF(x) lies between 0 and 1
for every value ofk.

(b) Defines, the total number of seeds that will be
released from the plant source in the field.

(c) Use arandom generator to genetsateumbers
between 0 and 1.

(d) Each generated number represents an outcome
F(x) of the CDF.

(e) Assign a distanceto thesS generated values of
F(x) using the inverse CDF.

(f) Save this data set containirfgdistances asso-
ciated with each dispersed seed. This data set
will be used again during the actual sequential
design procedure.

(g) Define the lengtl§;_1 to &; of each of the in-
tervals (bins) for the histograng;(— &1 = %
wherei is at least 20).

(h) Create an array MaxBins of size

(i) Formthe histogrank;, (x) (Eq.(12)) by thisarray
MaxBins:

i. Assign the appropriate number of seeds that
fall in each element of MaxBins from the data
set created in step 1e. For example, the num-
ber of seeds that will be assigned to the first
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element is the total number ofvalues from
the data set that lie between distageand
&1 (the length of the first bin).

2. Generate more (sa¥) histogramsk, (x) following
steps 1c to 1(i)X times.

3. For each generated histogram, calculate its moment
generating function/, (s) following Eq. (13) using
the X produced arrays MaxBins.

4. For each generated histogram, calculate an invasion
speed;, following Eq. (14) and save their values.

5. Calculate and average invasion spegdusing
the X invasions speeds calculated in stepcg £

Zf:l Chj

) and save its value.

9.
Appendix B. Procedure to obtain a sequential

sampling design

1. Define the maximum number of seed trapfst¢ be
put in the field for the experiment.

2. Define the diameter (@) of the seed traps to be use

3. Recall the bin sizez( — &;_1) used in Sectiorb.1,
step 19 to create a histograim(x).

4. Calculate the maximum number of seed traps (Max-
Traps) that would fit in the field with length
L.

5. Create an array Max of length MaxTraps. This array
will be used to create a histogram(x).

6. Place an initial number of seed trap®\(t of 7) in 2.
the array Max at evenly spaced sites (i.e. at every
(M""Xtﬂs)th element of Max starting at the first el-
ement). This will correspond to havingeed traps
in the field having distanceg = 0, x», ..., x;.

7. Assign a number of seeds to each of th@aced
seed traps in Max following:

(a) Recall the data set as saved in Sectioh
step 1f.

(b) Define the number of seeds that fall in each
of the ¢ placed seed traps. That is, count the 3.
number ofx values from the data set that fall
betweenx; + @, x2 + 4G, ..., x; + @ and save
their values in the corresponding element of the
array Max. 4,

8. Make a histograrfah in MaxBins from the limited
(r) seed trap data in Max:

(a) Define which of the elements of Max (that may
or may not contain a seed trap and thus seed

1.
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counts) go in which of thebins defined in Sec-
tion 5.1, step 1g. So,
i. e= % elements of Max per bin.

ii. The sum ofthe first elements go in the first
element of MaxBins, the sum of the second
e elements of Max go in the second element
of MaxBins, and so on until the sum of the
laste elements of Max, which go in the last
element of MaxBins. In other words,

ii. For k=1 do > %_; Max; = MaxBins.
For k=2 to i do Y%, Max; =
MaxBins.

(b) This results in a histograi (x) (Eq.(12)) pre-
sented by MaxBins with seed counts based on
ther seed traps.

Repeat steps 7b to 8b for all the data sets produced

in Sectionb5.1, step 1f, which will giveX histogram

estimatorsc, (x).

Thesex histogramsl}h (x), form the basis for the fol-
d'lowing procedure; the sequential sampling design. The
following algorithm is a guide to selecting the optimal

site in the field for the leftT — ¢) seed traps.

Load the first of th& histogramich (x) in the form

of Max (in which each element contains the actual
seed counts per seed trap) and load the associated
data set from Sectiob.1, step 1f.

Start with the nextt = r + 1, seed trap and put it
at the first element of the array Max having no seed
counts (open site). This will be the second element,
asthe firstelement has already been filled with seeds
when the firstt traps were assigned. The distance
from the source in the field associated with this open
site is the one next te; + & (the actual location in
the field of the first element of the array Max). In
other words, the site in the field of this new seed
trapisx1+ @+ =x1+2-Q.

Define the number of seeds that fall at this open site
by counting the number of values from the data
setthat fall betweem + @ andx; + 2 - @ and save
this additional value in the array Max.

Recalculate the histogra#)(x), in the form of
MaxBins now having one extra seed trap count,
which is at the element in the array Max associ-
ated with seed trap= r + 1. Use step 8(a)iii from
the previous procedure to do this.
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. This will give a recalculated histograny,(x) (d) Enter these counts in the appropriate Max array
(Eq. (12) in MaxBins with seed counts based on in the element associated with the new position
the ¢ + 1) seed traps. of the seed trap.

. Repeat steps 2-5 to recalculate the [Eft{ 1) his- 3. Followthe previous procedure from step 4to0 9. Note
togramsk;, (x). Note thatz = ¢ + 1 in step 2 still that now the matrix SpeedSiteMSE does not need
refers to the first extra seed trap in addition to the to be created again, just add the outcomes as a new
initially placed seed traps (just repeating the same  entry.
procedureX times). 4. Repeatsteps 1-3 until every of the MaxTrap§ +

. Calculate an average invasion Speed for Xhre- 1) left open sites in the field has been tested and
calculated histograms based on a limited number  thus associated with an averagealue and a MSE
of seed traps (i.es,+ 1). Use Eqs(13) and (14) saved in SpeedSiteMSE.
for each histogram. The average invasion speed is 5. Finally the best site in the field for this £ 1)th
. Zleeh/ seed trap has been located, which is the one having
Ch=—"x - the smallest MSE in the matrix SpeedSiteMSE.

. Create a matrix SpeedSiteMSE and store the valueg, pytthe seed trap which resulted in the smallest MSE
of 2;, in the first column. Store the location of (found in step 5) in Max. This means, get the seed
the ¢+ 1)th seed trap in the second column of  counts associated with the location of this seed trap
this matrix (this is the element number in Max from the data set (Sectidny, step 1f) and put them
(same for allX arrays Max) where ther ¢+ 1)th at the appropriate location in Max. Do this for all

seed trap was placed). The third column is re- the X arrays Max.

served for the associated MSE which is about to be

calculated.

. Calculate the MSE following equation H4.6) us- Now (r — 1) seed traps still need to be placed at their
ing thec), from step 7 and the,, as calculated in  optimal site in the field. The question is to find the
Section5.1 step 5 and save its value in the third optimal site for the next = r + 1 seed trap and repeat
column of SpeedSiteMSE. the procedure until = MaxTraps. In order to find the
optimal site for each additional seed trap, repeat the last
two procedures. Note that naw= ¢ + 1 in “Start with
the next,t =t + 1, seed trap..” of step 2 actually
refers to adding an extra seed trap.

In order to find the actual optimal site for this{

1. Reposition the same seed trap to the next of the

MaxTraps— (¢t + 1) left open “test” elements (in
each of theX arrays Max associated with thehis-

togramsl}h(x)). By “repositioning” we mean: set
the element of Max where this ¢ 1)th seed trap is

References

Assun@o, R., Jacobi, C.M., 1996. Optimal sampling design for stud-
ies of gene flow from a point source using marker genes or marked

placed ?‘t the moment, back t'O Zero. individuals. Evolution 50, 918-923.

. Start with step 3 of the previous procedure. How- Bullock, J.M., Clarke, R.T., 2000. Long distance seed dispersal by
ever, note to enter the correct numbexeilues in wind: measuring and modelling the tail of the curve. Oecologia
each of thex Max arrays at the new position. So, | 1k24v 506-521. A ) f

; Clark, J.S., Horvath, L., Lewis, M.A., 2001. On the estimation o
(@) Load the-appropnate data set from Secbdh spread rate for a biological population. Stat. Probability Lett. 51,
step 1f with each of th& Max arrays. 295 934

(b) Define between which distancesydgin and Dobzhansky, T., Wright, S., 1943. Genetics of natural populations,
xend) from the source the repositioned seed trap X. Dispersion rates iDrosophila pseudoobscura. Genetics 28,
would end up in the field. 304-340. _ o

(c) Count the number of values from the appro- Greene, D.F., Johnson, E.A., 1995. Long-distance wind dispersal of

. d hat lie b h d boi f tree seeds. Can. J. Bot. 73, 1036-1045.
priate data set that lie between the end points o Greene, D.F., Johnson, E.A., 1996. Wind dispersal of seeds from a

the new positionpegin andxend forest into a clearing. Ecology 77, 595-609.



222 A. Pielaat et al. / Ecological Modelling 190 (2006) 205-222

Heesterbeek, J.A.P., 2002. A brief history of R-0 and a recipe for its Malanson, G.P., 1996. Effects of dispersal and mortality on diversity

calculation. Acta Biotheor. 50, 189-204. in a forest stand model. Ecol. Model. 87, 103-110.

Hemerik, L., Busstra, C., Mols, P., 2004. Predicting the temperature- Matsinos, Y.G., Troumbis, A.Y., 2002. Modeling competition, dis-
dependent natural population expansion of the western corn root- persal and effects of disturbance in the dynamics of a grassland
worm, Diabrotica virgifera. Entomologia Experimentalis et Ap- community using a cellular automaton model. Ecol. Model. 149,
plicata 111, 59-69. 71-83.

Jesson, L., Kelly, D., Sparrow, A., 2000. The importance of dis- Murray, D.R., 1986. Seed Dispersal. Academic Press, Sydney, NSW.
persal, disturbance, and competition for exotic plant invasions Neubert, M.G., Kot, M., Lewis, M.A., 1995. Dispersal and pattern

in Arthur's Pass National Park, New Zealand. N. Z. J. Bot. 38, formation in a discrete-time predator—prey model. Theor. Popul.
451-468. Biol. 48, 7-43.

Jongejans, E., Telenius, A., 2001. Field experiments on seed dispersalNurminiemi, M., Tufto, J., Nilsson, N.O., Rognli, O.A., 1998. Spatial
by wind in ten umbelliferous speciesiaceae). Plant Ecol. 152, models of pollen dispersal in the forage grass meadow fescue.
67-78. Evol. Ecol. 12, 487-502.

Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal Okubo, A., levin, S.A., 1989. A theoretical framework for data anal-
data and the spread of invading organisms. Ecology 77, 2027— ysis of wind dispersal of seeds and pollen. Ecology 70, 329-338.

2042. Paradis, E., Baillie, S.R., Sutherland, W.J., 2002. Modeling large-
Lewis, M.A., Neubert, M.G., Caswell, H., Clark, J., Shea, K., 2005. scale dispersal distances. Ecol. Model. 151, 279-292.

A guide to calculating discrete-time invasion rates from data. Reshetin, V.P., Regens, J.L., 2003. Simulation Modeling of Anthrax

In: Cadotte, M.W., McMahon, S.M., Fukami, T. (Eds.), Concep- spore dispersion in a bioterrorism incident. Risk Anal. 23, 1135~

tual Ecology and Invasions Biology: Reciprocal Approaches to 1145.

Nature. Tackenberg, O., 2003. Modeling long-distance dispersal of plant di-

Lewis, M.A., Schmitz, G., Kareiva, P., Trevors, J.T., 1996. Models aspores by wind. Ecol. Monogr. 73, 173-189.
to examine containment and spread of genetically engineered Weinberger, H.F., 1982. Long-time behavior of a class of biological
microbes. Mol. Ecol. 5, 165-175. models. SIAM J. Math. Anal. 13, 353-396.



	Sequential sampling designs for catching the tail of dispersal kernels
	Introduction
	The theory of calculating invasion speeds
	Spread in one spatial dimension
	Spread in two spatial dimensions

	Calculating invasion speeds in practice
	Invasion speed from seed trap data
	Monte-Carlo methods

	``Optimal'' sampling design for seed dispersal
	Optimality criterion
	An estimate for the invasion speed from limited field information
	Practical considerations with an application to seed dispersal


	The procedure: dispersal in 1D
	Calculating the ``true'' spread rate, ch, for C. vulgaris
	The sequential sampling design

	The procedure: dispersal in 2D
	Aggregation of seed traps
	Applying the marginal distribution

	Results
	Dispersal in 1D
	Dispersal in 2D

	Discussion
	Acknowledgments
	Appendix A Calculation of the ``true'' expected wave speed
	Appendix B Procedure to obtain a sequential sampling design
	References


