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ABSTRACT For problems of classification and comparison in biological 
research, the primary focus is on the similarity of forms. A biological form can 
be conveniently defined as consisting of size and shape. Several approaches for 
comparing biological shapes using landmark data are available. Lele (1991a) 
critically discusses these approaches and proposes a new method based on the 
Euclidean distance matrix representation of the form of an object. The purpose 
of this paper is to extend this new methodology to the comparison of groups of 
objects. We develop the statistical versions of various concepts introduced by 
Lele (1991a) and use them for developing statistical procedures for testing the 
hypothesis of shape difference between biological forms. We illustrate the use 
of this method by studying morphological differences between normal children 
and those affected with Crouzon and Apert syndromes and craniofacial sexual 
dimorphism in Cebus apella. 

To be able to quantitatively compare the 
shapes of biological objects, we need a method 
for cataloguing the forms under consider- 
ation. This can be done in several ways. The 
choice of the type of data used in analysis 
depends upon the nature of the biological 
object under study, as well as the focus of the 
investigation. We feel that when available, 
landmark data have certain advantages over 
other mensurable components. The most im- 
portant advantage is maintenance of the 
relative position of all biological loci of inter- 
est, or of the geometric integrity of the form 
as represented by landmarks. Only specially 
designed suites of linear measurements 
based on landmark data maintain the geo- 
metric integrity of the forms under study. 
Series of measurements made up of external 
dimensions such as maximum breadth of a 
structure, or minimum diameter of a feature 
are inappropriate for the methods intro- 
duced here. In this study we use biological 
landmark coordinate data to archive each of 
the forms used in analysis. Since certain 
biological implications are involved in the 
use of landmark data, we discuss them be- 
fore presenting the method. 

LANDMARK DATA 

Most biological forms contain specific loci 
referred to as  biological landmarks. Land- 
marks are structurally consistent loci which 
can have evolutionary, ontogenetic, and/or 
functional significance, and must be consis- 
tently present on all forms under consider- 
ation in order to be useful in analysis. Land- 
marks are often referred to as  “homologous” 
points. Homology is used here in the sense 
given by Van Valen (1982) and further dis- 
cussed by Roth (19881, as  a correspondence 
between two or more characteristics of or- 
ganisms that is caused by continuity of infor- 
mation. The minimal criterion for a feature, 
character, or landmark to be used as a ho- 
mologous point in morphometric analysis is 
that given a single definition, it can be con- 
sistently and reliably located with a mensu- 
rable degree of accuracy on all forms consid- 
ered. 

When archiving landmark iocations of a 
three dimensional form, a K x 3 matrix is 
produced where K is the number of land- 
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marks on that form. Data appropriate for 
analysis by methods proposed in this paper 
include K x 2 or K x 3 matrices of coordi- 
nates. The number of landmarks, K,  depends 
largely on the nature of the forms under 
study or the research question being ad- 
dressed. In a complex form like the mamma- 
lian skull, there are a large number of land- 
marks which can be used as  homologous 
points. Because the neurocranium is made 
up of relatively large, smooth bones with 
fewer sutural intersections, foramina, and 
bony prominences, description of the neuro- 
cranium by landmark coordinate data is less 
thorough than for the face, for example. An- 
alytical results are consequently less com- 
plete for the neurocranium. 

When data are collected from images of 
biological forms (e.g., X-rays, computed to- 
mography scans, positron emission tomogra- 
phy scans) landmark identification can be- 
come more difficult. The identification of 
landmarks on images is dependent upon cer- 
tain characteristics of the images. The result 
may be fewer landmarks, or landmarks of a 
different kind. For these reasons landmark 
data collected from different sources are of- 
ten not directly comparable. 

There are biological forms on which very 
few, or no landmarks exist, or on which 
landmarks are not easily located. Alterna- 
tive statistical techniques for the compari- 
son of forms using alternate data (e.g., Fou- 
rier series approximations) are appropriate 
in those cases. We will not discuss such data 
or methods here. 

Several morphometric methods have been 
proposed for the analysis of landmark data, 
each with merits and demerits. In Lele 
(1991a) problematic issues associated with 
superimposition methods (Bookstein, 1986; 
Goodall and Bose, 1987; Goodall, 1991) and 
finite element scaling analysis (Lewis et al., 
1980; Cheverud and Richtsmeier, 1986) are 
discussed. Bookstein’s (1989 j thin plate 
splining methods also contain an  element of 
subjectivity since the choice of spline func- 
tion is based upon mathematical properties 
rather than a biological model. Lele (1991a) 
suggests an  alternative approach based on 
the Euclidean distance matrix representa- 
tion of the objects under study that over- 
comes the problems associated with other 
methods and is justified on various biological 
and statistical grounds. 

Lele and Richtsmeier (1990) have shown 
that statistical models used in morphometric 
analysis are often inappropriate for biologi- 

cal and statistical reasons. The development 
of methods for the statistical analysis of 
landmark data that are more flexible and 
less model dependent than the existing ones 
is clearly needed. This paper presents our 
preliminary attempt toward that goal. 

The purpose of this paper is to present 
statistical versions of various concepts de- 
scribed in Lele (1991a) and to develop a 
testing procedure for shape differences. In 
addition, we illustrate our approach using 
two examples: (1) a comparison of craniofa- 
cia1 morphology of normal children with that 
of children with Crouzon and Apert syn- 
drome in two dimensions; and ( 2  j a compari- 
son of male and female facial morphology in 
Cebus apella in three dimensions. Amethod- 
ology for localizing morphological differ- 
ences with application to similar data sets is 
discussed in the companion paper (Lele and 
Richtsmeier, 1991). Throughout this paper, 
we use the notation developed in Lele 
(1991a). 

SOME DEFINITIONS 
We assume that homologous landmarks 

occur on every object to be compared. The 
coordinates of these landmarks serve as raw 
data. Let there be K landmarks and P di- 
mensions. Usually P will be equal to two or 
three. 

Let X be a matrix of landmark coordinates 
with K rows and P columns: the ith row 
consists of the P coordinates of the ith land- 
mark. Note that given X one can approxi- 
mate the relative location of the landmarks 
of the object. Let F(X) denote the Euclidean 
distance matrix, henceforth referred to as  
the form matrix (see Lele, 1991a) corre- 
sponding to the object with landmark coordi- 
nate matrix X. F(X) is a symmetric matrix of 
dimension K x K that consists of distances 
between all possible pairs of landmarks. 

We define various quantities in terms of X 
as  well as  F(X). Note that Bookstein (1986) 
and Goodall and Bose (1987) describe their 
statistical model solely in terms of X-the 
landmark coordinate matrix. 

Below we generalize definitions concern- 
ing equality of two forms to equality of two 
populations of forms. This can be done in 
several ways. We have chosen to generalize 
these definitions in two ways: (1) in terms of 
the identical distribution of forms, and (2) in 
terms of equality of mean forms. 

We assume that X is some matrix valued 
random variable. (From this point on, we use 
the term random variable as  a shortened 
form of matrix valued random variable. j For 
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example, under the Gaussian perturbation 
model used by Bookstein (1986) and Goodall 
and Bose (1987), X has a matrix valued 
Gaussian distribution. We now define equal- 
ity of form and equality of shape in terms of 
the matrix valued random variables X and Y, 
where Y is a matrix of landmark coordinates 
for form Y. (X and Y are always matrix 
valued.) 
Definition 1 

Two random variables X and Y are said to 
have the same form if after proper rotation 
and translation X and Y are identically dis- 
tributed. That is: X d YB + l,t*, for some 
orthogonal matrix B and a vector t .  By iden- 
tically distributed we mean that the proba- 
bility distribution functions for X and Y are 
the same, although particular observations 
could and would be different. 
Definition 2 

Two random variables X and Y are said to 
have the same shape if after proper transla- 
tion, rotation and scalingX and Y are identi- 
cally distributed. That is: X d bYB + lhtT,  
for some scalar b > 0, B and t as  above. 

The corrsponding definitions in terms of 
the form matrix are: 
Definition 3 

Two random variables X and Yare  said to 
have the same shape if F(X) d cF(Y) for some 
scalar c > 0. If c = 1, then they have the 
same form. 

In practice it is difficult to test the hypoth- 
eses of equality of two distributions ( Z Y ) ,  
especially for matrix valued random vari- 
ables. This is one of the problems that occurs 
for trivariate and higher dimensional ran- 
dom variables. The data are too sparse to 
conduct nonparametric tests. We give sim- 
plified versions of equality of form and shape 
below in terms of mean form and mean 
shape. Let E( denote the expectation oper- 
ator. For example, E(X) denotes the average 
of the random variable X, or the average 
form representing a sample of forms. 
Definition 4 

equal in mean form if and only if 

E m )  = E(Y) B + ldT 

for some orthogonal matrix B and a vector t ,  
i.e., after translation and rotation the means 
of X and Y are equal. 

We say that random matrices X and Yare 

Definition 5 

equal in mean shape if and only if 

E(X) = bE(Y) B + ldT 

for some scalar b > 0, B and t as above, i.e., 
after translation, rotation, and scaling, the 
means of X and Y are equal. 

Note: The independent observations XI, 
X2,. . .,X, (i.e., the landmark coordinate ma- 
trices) from the distribution of X are identi- 
cally distributed only after proper transla- 
tion and rotation. The same caution applies 
to Yi's, the observations from the distribu- 
tion of Y. In this paper we are dealing with 
form matrices F(X,) and F(Y,) which are 
invariant under rotation and translation 
and are therefore identically distributed. 

We now give the same definitions in terms 
of form matrices. 
Definition 6 

Given two random variables X and Y we 
say that they are equal in mean shape if and 
only if F[E(X)] = cF[E(Y)] for some scalar 
c > 0. By this we mean that two mean forms 
have the same shape if one form is a scaled 
version of the other. If c = 1 then they are 
equal in mean shape. 

To examine the differences between two 
average forms we propose the use of a matrix 
of ratios of corresponding linear distances 
measured on X and Y. We call this matrix the 
average form difference matrix. 
Definition 7 

Given two random variables X and Y, we 
define the average form difference matrix by 

D[E(X), E(Y)I = 

where j > i, i = 1,2,. . .,k. Note that when 
this matrix is a matrix of Is, we say that the 
two random variables are equal in mean 
form. When this matrix is c . 1 for scalar 
c > 0 and 1 is a matrix of Is, then we say that 
the two random variables are equal in mean 
shape. 

Note that our model is invariant with re- 
spect to reflection. We feel that for specific 
biological problems this property can be of 
great advantage to the researcher. For ex- 
ample, invariance with respect to reflection 
makes geometrically based studies of asym- 
metry possible. In the study of archeological 
or paleontological samples, specimens are 

We say that random matrices X and Y are 

[D,[E(X), E(Y)II = FJE(X)I 1 FJE(Y)II 
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often fragmentary. Assuming symmetry in 
the organisms under study, invariance with 
respect to reflection can allow direct, geo- 
metrically based comparison of fossils which 
have opposite sides preserved thereby in- 
creasing sample size. 

TESTING FOR EQUALITY OF AVERAGE SHAPES 

Suppose there are two populations whose 
shapes we want to compare. Let X,, 
X2,. . .,X, be a random sample of forms from 
Population I and Y,, Y2,. . .,Y, be a random 
sample from Population 11. The null hypoth- 
esis is that the average shapes of the two 
populations are equal, which can be ex- 
pressed using Definition 6, as  follows: 

H,: F[E(X)I = cF[E(Y)I for some c > 0 

A natural way to test this hypothesis 
would be to estimate F[E(X)I and F[E(Y)I 
from the data, calculate the estimate of aver- 
age form difference matrix D[E(X), E(Y)I 
using these estimates, and then test whether 
or not this matrix is “almost” a matrix of 
constants or not. 

Estimating the form difference matrix 
In the following, we offer two different 

procedures for estimating F[E(X)l and 
F[E(Y)l. 
Method 1 

The most natural way to estimate F[E(X)I 
would be to estimate the average coordinates 
of X, E(X), and then calculate its form ma- 
trix. Although one can use any superimposi- 
tion method, such as edge matching, we use 
generalized procrustes analysis (GPA) to- 
ward this end. Given X,, Xz,. . .,X, we apply 
GPA (as describedin Goodall and Bose, 
1987) to get X. This X is a consistent estima- 
tor of E(X) (see Goodall, 1991; however, see 
Lele, 1991b, for a further discgssion).2imi- 
larly one can estimate E(Y) by Y. Here X and 
Y are coordinatewise averages of X,, X,, 
. . .,X, and Y1, Y2,. . .,Ym after superimposi- 
tion. F[E(X)] and_F[E(Y)I can then be esti- 
mated by using F(X) and F(Y). 
Method 2 

A natural and computationally simpler 
estimator of F[E(X)] is an average ofthe form 
matrices F(X,), . . .,F(X),-,), that is, an  aver- 
age of like linear distances within a sample 
of forms. Unfortunately, the resultant esti- 
mator is neither unbiased nor consistent for 
F[E(X)I. However the bias depends on the 

coefficient of variation and if it is small, the 
bias is negligible. We make this statement 
more precise in Theorem A1 in Appendix A. 
The theorem essentially shows that the form 
difference m a t r h  calculated from the aver- 
age F(X) and F(Y) is a consistent (or almost 
consistent) estimator of the true form differ- 
ence matrix under fairly general conditions. 
For example, this result holds true even 
when the errors a t  various landmarks are 
dependent, nonidentical, or nonsymmetric 
around the origin. 

Statistically, the behavior of the ratios can 
be tricky. We have studied the behavior of 
the estimator of the average form difference 
matrix described in Method 2 by simulation 
(Lele and Richtsmeier, 1991). The estimator 
is stable for moderate sample sizes. 

In the following discussion we assume that 
F[E(X)I and F[E(Y)I are available using ei- 
ther of the above methods. For the sakesf  
simplicity of notation we write these as  F(X) 
and F(Y), respectively. 

The next step is to calc_ul&e the average 
form difference matrix D(X, Y) using defini- 
tion 6. Thus 

D, (X, Y) = F J X )  /F,&y), i > j  = 1,2,. . .,K 

In order to test the null hypothesis of simi- 
larity of form, we need to test whether or not 
this matrix is “too far” from a matrix of 
constants. Several test statistics cag be pro- 
posed towards this objective: Let D be the 
average of the_ele_ments of the form differ- 
ence matrix D(X, Y). 

_ -  

T I  = c [ D ,  (X, Y) - DI2 (1) 
L J  

- _  _ _  
7’3 = max D,,j ( X ,  Y) - min Dij (X, Y) 

T = max Di; (X, Y)/min Di; (X, Y) 

(3) 

(4) 

If the null hypothesis is true, the first 
three quantities are close to zero, and the 
fourth quantity is close to one. We prefer the 
last statistic for the following mathematical 
and statistical reasons. 

First, shape and shape difference are in- 
variant under scaling. Let X and Y be two 
objects under consideration and let cX and 
dY be their scaled versions with c not neces- 
sarily equal to d and c 0, d > 0. We expect 

i.; i J  

_ _  - _  
i.1 i,j 
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that any test statistic that claims to indicate 
“shape difference” should assume identical 
values whether we compare X and Y or cX 
and dY. It is easy to check that T remains the 
same for both, but T,, T,, T ,  do not. 

Second, calculation of the null distribution 
is uncomplicated because the null distribu- 
tion is invariant under scaling. This follows 
from the above property. 

Third, the test statistic is sensitive to 
changes in shape. There is a danger that the 
method may be too sensitive. To protect 
against spurious results one might robustify 
this statistic by applying some trimming. 
For example, one may take the ratio of the 
third quartile and the first quartile. How- 
ever, as explained by Lele and Richtsmeier 
(1991), the extremes of the form difference 
matrix contain most of the information per- 
tinent to form or shape difference. It seems 
imprudent to ignore the most useful infor- 
mation pertaining to the locus of shape dif- 
ference in order to increase the robustness of 
the test. Routine statistical thinking in non- 
routine problems can be very dangerous. We 
therefore do not suggest any robustified ver- 
sion of our proposed statistic, T. For small 
sample sizes, however, T can be somewhat 
unstable. We suggest that when faced with 
small sample sizes one should worry less 
about “acceptance” or “rejection” of the null 
hypothesis and consider the analysis explor- 
atory. Studying the form difference matrix 
itself proves to be very useful in such situa- 
tions (see Richtsmeier and Lele, 1990). 

Fourth, this last test statistic results from 
the union-intersection principle. See Appen- 
dix B for details. 

Estimation of the null distribution 

Even in the simplest case of Gaussian 
perturbations, the analytical derivation of 
the null distribution of T is extremely com- 
plicated. Hence in the following we describe 
a bootstrap procedure for estimating the null 
distribution of the test statistic T. This is 
based on the well-known permutation test 
procedure coupled with Bootstrap (Efron, 
1982) methodology to reduce the computa- 
tional burden. A similar procedure for esti- 
mating the null distribution of a test statistic 
is employed by Clarren et al. (1987). See 
Romano (1988,1989) for statistical justifica- 
tion of these procedures, 
Bootstrap procedure 

Let X,, X2,. . .,X, and Y,, Y2,. . .,Y, be the 

two samples. Let 2 = (Zl, Z2,. . .,Z, + J, de- 
note the mixed sample made up of X and Y. 

Step 1. Select ZT, i = 1,2,. . .,n + m from Z 
randomly and with replacement. 

Step 2. Split the bootstrap sample Z* = 
(ZT, Zz,. . .,ZE + ,I in two groups Z?, . . .,ZE 
and Zz + ,,. . .,ZE + , corresponding to the 
size of the original samples X and Y 

Step 3. Calculate T * for these two “sam- 
ples”, using the average form obtained by 
either Method 1 or 2. In our examples we 
have used Method 1. 

Step 4. Repeat steps 1-3 B times where B 
is large (approximately 100). A histogram of 
T$ j = 1,2,. . .,B estimates the null distribu- 
tion of T,  when H,, is true. 
Testing procedure 

If the observed value of T ,  i.e., the value 
calculated with original samples X and Y is 
in the extreme right-hand tail of the null 
distribution, we reject H,, at  the appropriate 
level of significance. One may also report the 
P-value. 

EXAMPLES 
Craniofacial dysmorphology 

Premature closure of craniofacial sutures 
(craniosynostosis) is a component of Crouzon 
and Apert syndromes. Irregularity of the 
pattern of premature craniosynostosis is 
common in both syndromes. In addition, 
these syndromes are marked by facial abnor- 
malities, including shallow bony eye orbits, 
increased interorbital distance (hyperte- 
lorism), a “beaked,” parrot-like nose, and 
defective formation of the maxilla resulting 
in a sunken appearance of the face. A more 
complete description of Crouzon and Apert 
craniofacial morphology can be found in 
Kreiborg (1986). 

The data analyzed in the following exam- 
ple are coordinate locations of biological 
landmarks located on lateral X-rays of nor- 
mal males and those affected with Apert and 
Crouzon syndrome. The 10 landmarks used 
in analysis are presented on an outline of a 
lateral projection of the skull as seen in an  
X-ray (Fig. 1) and are defined in Table 1. 
Details about the samples and data collec- 
tion procedures can be found in Richtsmeier 
(1987). 

Using Euclidean distance matrix analysis 
(EDMA) we compared a sample of four year 
old [N(4) = 201 and 13-year-old [N,,,, = 191 
normal males with age matched samples of 
Apert lN,,, = 5; N(,,) = 51 and Crouzon “,,, = 4; N(,,) = 51 boys. In the comparison 
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Fig. 1. Biological landmarks located on a two-dimen- 
sional representation of the human skull as seen in a 

lateral radiograph and used in analysis of normal, 
Crouzon, and Apert morphology. 

TABLE 1. Definition and description of landmarks used as homologous points in analysis of normal, 
Crouzon, and Apert midsagittal craniofacial morphology 

Landmark 
number Landmark name and description 

1 
2 
3 

4 

5 

6 

7 

Nasion: Point of intersection of the nasal bones with the frontal bone 
Nasale: Inferior-most point of intersection of the nasal bones 
Anterior nasal spine: Anterior-most point at  the medial intersection of the maxillary bones at 

the base of the nasal aperture 
Intradentale superior: The point is located on the alveolar border of the maxilla between the 

central incisors 
Posterior nasal spine: Posterior-most point of intersection of the maxillary bones on the hard 

palate 
Tuberculum sella: “Saddle” of hone just posterior to the chiasmatic groove on the body of the 

sphenoid bone 
Sella: Most inflexive point of the hypophyseal fossa. The hypophyseal (Pituitary) fossa is defined 

as the bony depression which holds the pituitary gland. This fossa is bounded by tuberculum 
sella anteriorly and posterior sella posteriorly 

fossa 
8 

9 
10 

Posterior sella: A square plate of bone which serves as the posterior border of the hypophyseal 

Basion: The most anterior border of the foramen magnum 
Internal occipital protuberance of the cruciate eminence of the occipital bone 

of the 4-year-old normal males with the age- 
matched sample of Crouzon boys, the first 
step is to calculate a mean for each sample. 
To do this we applied a generalized pro- 
crustes algorithm to each sample separately. 
For each sample, linear distances between 
all possible pairs of points (N  = 45) were 
computed from the suite of 10 averaged land- 
mark locations. The resultant form matrix 
for 4-year-old normal boys and for 4-year-old 
boys with Crouzon syndrome were used to 
compute the form difference matrix. Like 
linear distances from the two form matrices 
were paired and a ratio was computed for 
each linear distance. In our example, linear 

distances from the normal sample serve as  
the numerator while linear distances from 
the Crouzon sample appear in the denomina- 
tor. This matrix of ratios, the form difference 
matrix (Table 21, provides a distance by dis- 
tance comparison of the average forms rep- 
resenting the two samples. 

To test for difference between the two 
samples of forms, the statistic T is calculated 
(T = 1.309/0.826 = 1.58). The null distribu- 
tion of T is calculated by first combining 
individuals from the normal sample and 
from the sample of boys with Crouzon syn- 
drome (N = 24). From this combined sam- 
ple, individuals are picked at random and 
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TABLE 2. Form difference matrices for  the comparison of Apert and Crouzon with age-matched normal samples 

Normal/Crouzon age 4 NormalIApert age 4 Normal/Crouzon age 13 NormaVApert age 13 
Ratio' Landmarks' Ratio Landmarks Ratio Landmarks Ratio Landmarks 

0.826 
0.935 
0.982 
0.985 
0.990 
0.994 
0.997 
1.005 
1.016 
1.019 
1.022 
1.070 
1.072 
1.073 
1.079 
1.089 
1.090 
1.090 
1.094 
1.095 
1.102 
1.103 
1.106 
1.116 
1.117 
1.125 
1.129 
1.129 
1.135 
1.152 
1.152 
1.154 
1.157 
1.157 
1.159 
1.159 
1.162 
1.182 
1.183 
1.195 
1.209 
1.216 
1.258 
1.274 
1.309 

8-7 
2-1 
3-1 
3-2 
8-6 
4-2 
4- 1 
4-3 
7-6 
5-2 
5-1 
8-1 
8-2 
5-3 
7-1 
6-1 

10-9 
7-2 
6-2 
9-1 

10-2 
9-2 

10-1 
10-7 
10-6 
8-3 

10-3 
5-4 

10-8 
6-3 

10-4 
9-6 

10-5 
7-3 
8-4 
9-8 
9-3 
6-4 
9-7 
7-4 
9-4 
8-5 
6-5 
9-5 
7-5 

0.824 
0.850 
0.854 
0.869 
0.964 
0.970 
0.973 
0.973 
0.982 
1.000 
1.001 
1.008 
1.013 
1.033 
1.048 
1.055 
1.061 
1.065 
1.074 
1.075 
1.077 
1.082 
1.084 
1.085 
1.087 
1.091 
1.093 
1.096 
1.101 
1.104 
1.111 
1.113 
1.113 
1.120 
1.121 
1.125 
1.131 
1.134 
1.136 
1.138 
1.143 
1.144 
1.145 
1.185 
1.199 

7-6 
10-9 
8-6 
8-7 

10-5 

10-6 
3-2 

10-8 
10-3 
10-4 
10-2 
4-2 

10-1 
5-2 
8-2 
9-6 
7-2 
3-1 
9-2 
4-3 
8-1 
8-3 
4-1 
5-3 
7-1 
9-8 
6-2 
9-1 
7-3 
8-4 
9-3 
5-1 
5-4 
6-3 
9-7 
6-1 
8-5 
7-4 
2-1 
6-4 
9-4 
9-5 
6-5 
7-5 

10-7 

0.761 
0.870 
0.897 
0.912 
1.003 
1.021 
1.031 
1.040 
1.053 
1.058 
1.068 
1.076 
1.090 
1.091 
1.097 
1.098 
1.108 
1.108 
1.113 
1.116 
1.121 
1.137 
1.139 
1.143 
1.146 
1.153 
1.158 
1.165 
1.175 
1.178 
1.178 
1.188 
1.191 
1.193 
1.198 
1.205 
1.220 
1.231 
1.241 
1.252 
1.266 
1.268 
1.273 
1.275 

8-7 
8-6 
7-6 
4-3 
2-1 
5-1 
4-1 
4-2 

10-9 
5-2 
8-1 
3-1 

10-6 
10-7 
10-1 
7-1 
8-2 
6-1 

10-2 
3-2 

10-8 
9-1 
5-3 
6-2 
7-2 

10-3 
10-5 
10-4 
9-2 
6-5 
5-4 
8-4 
8-3 
9-6 
6-4 
8-5 
6-3 
7-4 
7-3 
9-3 
9-7 
7-5 
9-8 
9-4 

0.697 
0.706 
0.786 
0.837 
0.946 
1.005 
1.032 
1.049 
1.056 
1.074 
1.081 
1.082 
1.083 
1.085 
1.085 
1.088 
1.092 
1.099 
1.106 
1.112 
1.112 
1.113 
1.114 
1.114 
1.130 
1.132 
1.138 
1.142 
1.152 
1.152 
1.162 
1.174 
1.178 
1.179 
1.180 
1.192 
1.194 
1.205 
1.230 
1.252 
1.256 
1.282 
1.286 
1.317 

7-6 
8-7 
8-6 
4-3 

10-9 
4-2 
8-1 
7-1 

10-5 
5-1 
6-1 
4-1 
5-2 
9-1 

10-7 
10-4 
10-3 
8-2 
5-3 

10-1 
9-2 

10-6 
3-2 

10-2 
7-2 

10-8 
9-3 
9-6 
6-2 
8.3 
5-4 
8-4 
9-4 
9-5 
3-1 
6-4 
6-3 
7-3 
7-4 
6-5 
8-5 
9-8 
9-7 
2-1 

1.406 9-5 1.411 7-5 

'Ratio i-j equals thedistance between landmarks iandj in the normal group divided by the corresponding distancein thecomparison group. 
'Landmarks refer to the endpoints of each linear distance (see Table 1 for Iandmark numbers). 

with replacement in order to form two sam- 
ples of the size of the Crouzon and normal 
samples (i.e., N = 20 and N = 4). The com- 
parison of these bootstrapped samples is 
done using the exact procedures outlined for 
comparing the original data. Mean forms are 
calculated, form matrices are computed and 
then compared by calculating a form differ- 
ence matrix. T is calculated from the form 
difference matrix of the bootstrapped sam- 
ple. This entire procedure is repeated 100 

times and the resulting distribution of T is 
plotted as a histogram (Fig. 2). Since each 
individual form has an  equal chance of being 
chosen during the bootstrap procedure, the 
composition of the bootstrapped samples is 
random. The location of Tabs with respect to 
the null distribution of T indicates the prob- 
ability of obtaining Tobs when the sample 
forms are equal. 

The P-value obtained in the comparison of 
normal with Crouzon a t  age 4 is 0.10. (See 
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1.0 1.4 1.8 2.2 

Values of bootstrapped T 

Fig. 2. Bootstrap estimate of the null distribution of 
T for the comparison of normal boys and those affected 
with Crouzon syndrome at  age 4. T<,bs was equal to 1.58 
and 10% of the bootstrapped Ts exceeded To,,,. 

Figure 2 for the bootstrap estimate of the 
null distribution of T.) Previous studies of 
Crouzon craniofacial morphology have noted 
a distinct dysmorphology local to the pitu- 
itary fossa (Kreiborg, 1976, 1986; Richts- 
meier, 1987) and an extremely reduced pos- 
terior cranial base (Kreiborg and Pruzansky, 
1981; Kreiborg, 1986). The posterior cranial 
base can be visualized on Figure 1 as  that 
area between the pituitary fossa (landmarks 
6 ,7 ,8)  and basion (9). Our analysis supports 
previous observations, as  landmarks 6, 7, 
and 8 are involved in many of the extreme 
ratios (see Table 2) and the distance from 
landmark 9 to landmarks 6, 7, and 8 are all 
a t  the maximum end of the ratio matrix. 
Following Bertelsen (1958), we feel that dys- 
morphology of the pituitary fossa is due to 
increased local bony resorption in response 
to intracranial pressure caused by cranio- 
synostosis. The extreme dysmorphology lo- 
cal to the pituitary fossa results in a deepen- 
ing of the fossa producing an  apparent 
reduction in the length of the posterior cra- 
nial base. 

Our analysis also indicates that the an- 
teroposterior diameter of the occipital region 
of the neurocranium (measured as  10-9, 
10-8) is smaller than normal in Crouzon 
syndrome. This is due to neurocranial dys- 
morphology associated with premature syno- 
stosis. In addition, palatal length, measured 
from landmark 4 to 5, is shorter in the 

Crouzon sample supporting previous obser- 
vations of a smaller palate in Crouzon syn- 
drome. The relationship of landmarks 4 and 
5 with landmarks on the cranial base re- 
flects the midfacial hypoplasia found in 
Crouzon syndrome and suggests the primacy 
of the posterior nasal spine in this regional 
dysmorphology . 

Crouzon morphology (N = 5) is extremely 
different from normal (N = 19) a t  age 13 
(P = 0.01). This suggests that the 13-year- 
old Crouzon morphology is more different 
from an  age-matched normal sample than is 
the 4-year-old Crouzon form. These findings 
agree with those of Kreiborg and Pruzansky 
(1981) who found that the dysmorphology of 
Crouzon syndrome worsens with age (but see 
Richtsmeier, 1987 for dicussion). By age 13 
the pituitary fossa (landmarks 6, 7, 8) is 
extremely enlarged in the Crouzon sample 
as  indicated by ratios at the minimum end of 
the matrix. Reduction of distances measured 
from the cranial base to the face reflects the 
combination of an  enlarged pituitary fossa 
and the persistent hypoplastic maxilla. 

The P-value obtained in the comparison of 
normal (N = 20) with Apert syndrome 
(N = 5) at 4 years of age is 0.16. Like the 
younger Crouzon sample, the pituitary fossa 
is enlarged. We attribute this local dysmor- 
phology to the same cause cited for the 
Crouzon sample: continual or increased in- 
tracranial pressure caused by craniosynosto- 
sis resulting in massive remodeling of the 
pituitary fossa. Like the Crouzon sample, 
distances measured from the palate (land- 
marks 3 ,4 ,5 )  to the cranial base (landmarks 
6, 7, 8, 9) are reduced indicating maxillary 
hypolasia in 4-year-old Apert individuals. 

By age 13, the Apert sample (N = 5) is 
distinct from the normal sample (N = 19), 
with a P-value of 0.01. Older Apert individu- 
als are more different from age matched 
normals than are 4-year-old Apert individu- 
als. Our results tend to support those which 
have characterized Apert syndrome as  an 
age-progressive disease (Pruzansky, 1977; 
Kreiborg and Pruzansky, 1981; Richtsmeier, 
1987). Age progressivity is specific to certain 
anatomical regions however, as  a subgroup 
of the ratios is close to one in both age groups. 
Landmarks surrounding the pituitary fossa 
(6, 7, 8) are indicated as  those which differ 
greatly between the normal and pathological 
samples at 13 years of age. The significance 
of this local pattern of dysmorphology associ- 
ated with Crouzon and Apert syndromes 
should not be underestimated, nor should 
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TABLE 3. Landmarks used as homologous points in analysis of sexual dimorphism among adult Cebus apella 

Landmark number Landmark 

8 Nasion 
9 Nasale 

10 Intradentale superior 
11 
12 
13 
14 
15 
16 
17 Right zygomaxillare inferior 
18 Left zygomaxillare inferior 
31 
32 
35 
36 Vomer-sphenoid junction 

Right premaxilla-maxilla junction at  alveolus 
Left premaxilla-maxilla junction at  alveolus 
Right frontal-zygomatic junction on orbital rim 
Left frontal-zygomatic junction on orbital rim 
Right zygomaxillare superior on orbital rim 
Left zygomaxillare superior on orbital rim 

Right maxillary tuberosity: maxillary-palatine intersection 
Left maxillary tuberosity: maxillary-palatine intersection 
Posterior nasal spine: vomer-palatine intersection 

the role of this pattern in the results of 
earlier studies based on registration systems 
centered on the pituitary fossa. 

This analysis does not adequately describe 
the spectrum of craniofacial anomalies asso- 
ciated with Crouzon and Apert syndromes. 
This reflects a paucity of facial and neuro- 
cranial landmarks obtainable from a lateral 
X-ray, rather than flaws in our technique. To 
characterize the morphology of the Crouzon 
and Apert face, more data points from alterna- 
tive (three-dimensional) sources are needed. 

We stress that our results are to a large 
degree consistent with previous studies of 
craniofacial morphology of Apert and Crouzon 
syndrome. Additionally, our results under- 
score the extreme deformation of the pitu- 
itary fossa, an area that is frequently used as 
a registration center in the analysis of radio- 
graphs. 

Sexual dimorphism in Cebus apella 
The data analyzed in this example are 

three-dimensional coordinates of 15 biologi- 
cal landmarks (Table 3) located on the facial 
skeletons of male and female adult C. apella 
(Fig. 3). The numbering system for these 
landmarks is not continuous because these 
data are part of a larger study of craniofacial 
growth in New World monkeys (Corner and 
Richtsmeier, 1991a,b). The female sample 
(N = 38) was compared to the male sample 
(N = 34) using EDMA to determine the loci 
and magnitude of sexual dimorphism of C. 
apella faces. The P-value obtained is 0.01 
indicating a significant degree of morpholog- 
ical distinction between adult male and fe- 
male C. apella faces. 

The form difference matrix for the compar- 

ison of female to male faces (Table 4) indi- 
cates that all linear distances are less than 
or nearly equal to 1. This demonstrates that 
the female face is generally smaller than the 
male C. apella face. The reader should note, 
however, that the form difference matrix is 
not a constant; sexual dimorphism of C. 
apella is not due to differences in size alone, 
but to differences in form. To clearly under- 
stand the nature of this dimorphism, close 
inspection of the form difference matrix is 
required. 

Beginning our discussion at the maximum 
end of the matrix (Table 41, note that three of 
the linear distances that are nearly equal to 
1 involve the maxillary tuberosities and pos- 
terior nasal spine, and measure the width of 
the posterior palate. The distances mea- 
sured from maxillary tuberosities to the con- 
tralateral premaxillary-maxillary junction 
are also similar between the sexes indicating 
similar dimensions of the posterior palate in 
males and females along an oblique antero- 
medial axis. 

The minimum end of the form difference 
matrix consists of those linear distances that 
are most different between the sexes. Dis- 
tances measured from maxillary tuberosity 
to ipsilateral zygomaxillare inferior are most 
sexually dimorphic. Distances from the pos- 
terior nasale spine to zygomaxillare inferior 
and from left to right zygomaxillare inferior 
are also particularly dimorphic. These ratios 
represent sexual differences in the degree of 
flaring of the zygomatic regions among C. 
apella producing a wider male face. 

Increased prognathism of the muzzle in 
males is evidenced by the ratios of distances 
measured from nasale to intradentale supe- 
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Fig. 3. Biological landmarks located on three planar 
views of the face of C. upella. Landmark locations were 
recorded in three dimensions using the 3Space digitizer. 

rior (9, lo), from zygomaxillare superior to 
premaxillary-maxillary junction (16,12 and 
15, l l ) ,  from zygomaxillare superior to in- 
tradentale superior (16, 10 and 15, lo), and 
from premaxillary-maxillary junction to zy- 
gomaxillare inferior (18,12 and 18,ll).  This 
prognathism has both an anteroposterior 
and superoinferior component. Finally, dis- 
tances measured from the vomer sphenoid 
junction (36) to points on the palate (posteri- 
or nasal spine, maxillary tuberosities, pre- 
maxillary-maxillary junction) indicate a 
fundamental sexual difference in the hafting 
of the face onto the basicranium among C. 
apella. 

This example has demonstrated that al- 
though female C. apella facial skeletons are 
generally smaller than males, the difference 

is not a generalized isometric one. EDMA 
enables us to identify those loci that are most 
similar and most different between the 
sexes. Although the width of the posterior 
two-thirds of the palate is most similar be- 
tween the sexes, the width of the midface, 
especially local to the zygomatic arches are 
the most sexually dimorphic structures. 
EDMA has also localized the sites of in- 
creased male prognathism of the muzzle and 
underscored a fundamental sexual differ- 
ence in the hafting of the face onto the cra- 
nial base. Examination of linear distances 
with information that provides for geometric 
integrity of the forms considered (i.e. the 
form difference matrix) has allowed us to 
sort locations according to their contribution 
to sexual dimorphism of the facial skeleton. 
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TABLE 4.  Form difference matrix for the comparison 
of female and male Cebus apella’ 

Female/male ratio Landmarks 

,8807 
,8977 
,9089 
,9104 
,9133 
,9153 
,9161 
,9170 
.9219 
,9219 
.9226 
,9228 
,9234 
,9240 
,9250 
,9253 
,9255 
,9269 
,9289 
.9291 
.9301 

* 

32-18 
31-17 
35-18 
36-35 
10-9 

36-18 
18-17 
35-17 
16-12 
15-11 
18-12 
18-11 
36-17 
16-10 
15-10 
36-31 
36-32 

35-11 
35-8 

18-10 

18-15 
* 

,9594 32-15 

,9595 36- 13 
,9598 32-16 

,9614 32-10 

.9618 32-9 

,9594 18-14 

,9609 31-11 

.9616 31-14 

,9619 14-13 
,9619 31-13 
,9623 16-13 

,9661 32-13 
,9664 31-10 
,9672 31-9 
,9674 31-16 
,9685 13-9 
,9785 17-13 

1.0128 35-32 
1.0139 15-13 
1.0141 35-31 

,9632 31-12 

,9889 32-31 

‘A totalof 105lineardistanceswerecomputed asubaetofthese, the 
extremal ends of the matrix, is shown. 
‘Indicates information missing. 

DISCUSSION 

In this paper we have shown how the 
Euclidean distance matrix-based approach 
for comparison of shapes suggested by Lele 
(1991a) can be extended for comparing aver- 
age shapes of two groups statistically. We 
have illustrated its use in biological situa- 
tions. Elsewhere we have compared the per- 
formance of this method with other methods 
theoretically (Lele, 1991a) and in a practical 
application (Richtsmeier and Lele, 1990). 

A biologist is rarely interested in solely 
testing whether populations of forms or 

shapes are equal. Rather, the biologist seeks 
to identify those areas where the differences 
are most prominent. A ranking of various 
areas according to their contribution to the 
explanation of the shape differences ob- 
served is required to answer this question. In 
the companion paper (Lele and Richtsmeier, 
1991) we suggest a method to address these 
issues. 
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APPENDIX A 

Let X and Y be two matrix valued random 
variables. Let XI, Xz,. . .,X, and Y,, 
Y2,. . .,Y, be the random samples fromXand 
Y,  respectively. 

Let E(X,), E(Xz),. . .,E(X,) and 
E(Y,),. . .,E(Y,) be the corresponding ele- 
mentwise sauared form matrices. Consider 
the squared distance between two land- 
marks i and j. 

Let E,(E(X))) denote the squared distance 
between landmarks i and j in the average 
matrix of X. Similarly let E,[E(Y)I be the 
corresponding quantity for Y. Then 
I), [E(X)J, [E(Y)l = E,,[E(X)I / E,[E(Y)l. 

b y  strong law of large numbers, 

1 ,  
- c E i ,  (X,) - A,, 

r=l  
a.s. 

as n, m - m, where 

Aij = E[Eij (Wl#  Eij [E(X)I 

and 

Bij = E[Eij (Y)] # Eij [E(Y)] 

It is trivial to check that 

A j  = Eij [E(X)l + vlJ (x) 
Btj z= Ecj [E(Y)I + Vtj (Y) 

where VJX) and V J Y )  are variances. An 
example makes this notation clear. Let X, 
and X, be two random variables with finite 
second moments. Then 

The first term corresponds to E (E(X)) and 
the second term corresponds to <,(XI. 

Theorem Al :  If V ,  (XI / E,  [EWI = Vv (Y) / 
E,[E(Y)], i.e., if the coefficients of variation 
are equal, then 

= O  
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Hence the proof. 
The condition of the theorem says that the 

larger the distance between two landmarks, 
the larger is the variation. This holds true for 
the model presented by Goodall and Bose 
(1987). We also note that Bookstein (1986) 
assumes that variation is very small as  com- 
pared to the distances. Under this condition 
it is clear that the bias in our estimator is 
very small even when the condition of the 
theorem does not hold. 

The theorem essentially says that the 
shape difference matrix can be estimated 
consistently using the average of the form 
matrices. Average of the form matrices is not 
a form matrix of the average object. How- 
ever, for the purposes of testing and localis- 
ing the shape differences it is sufficient to 
have a consistent estimator of the form dif- 
ference matrix. 

APPENDIX B 
Union-intersection principle and 

derivation of the test 
Roy (1957) introduced the union-intersec- 

tion principle to develop tests particularly 
for multivariate distributions. The null hy- 
pothesis H,, can frequently be expressed as 
an  intersection of several null hypotheses 
H,,, a = 1,2,. . .,h. When expressed in this 
way, the null hypothesis, H,,  is supported if 
and only if all H,, a = 1,2,. . .,h are sup- 
ported. For example, in the situation consid- 
ered in this paper: 

H,: D[E(X)] ,  E(Y)) = c 1 or equivalently 
H,: D,  [E(X),  E(Y)l = c for all 

This hypothesis holds if and only if 

i > j  = 1,2,. . .,h 

is true for all pairs (i , j) ,  ( i ‘ j ’ )  i > j ,  i’ >j ’ .  
Thus 

This is the intersection part of the union- 
intersection principle. In words, this says 
that two shapes are equal if and only if any 
two elements in the form difference matrix 
are identical. 

The union part of the union-intersection 
principle requires that we accept H ,  if and 
only if all the subhypotheses H,. (ijl, ( i f i s ,  are 
accepted, or equivalently, reject i?, if any one 
of the subhypotheses is rejected. 

Note that the most different pair of ele- 
ments in the form difference matrix gives the 
ratio 

max Dij [ E W ,  E(Y)I 

min Dij [E(X), E(Y)] 
i,j 

i J  

which is consistently estimated by 

T = max Dij (X, Y)/min . .  Dij (X, Y) 
- _  _ -  

i ,j  41 

If this ratio is not “too far” from 1, all the 
other subhypotheses corresponding to other 
pairs cannot be “too far” from 1. Hence we 
accept H ,  if T is “close” to 1 otherwise we 
reject H,. The proposed test is thus a union- 
intersection test. 




