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SUMMARY

Many ecological studies are characterized by paucity of hard data. Statistical analysis in such situations leads to
flat-likelihood functions and wide confidence intervals. Although, there is paucity of hard data, expert knowledge
about the phenomenon under study is many times available. Such expert opinion may be used to strengthen
statistical inference in these situations. Subjective Bayesian is one approach to incorporate expert opinion in
statistical studies. This approach, aside from the subjectivity, also faces operational problems. Elicitation of the
prior is the most difficult step. Another is the lack of a precise quantitative definition of what characterizes an
expert. In this paper, we discuss a different approach to incorporating subjective expert opinion in statistical
analyses. We argue that it is easier to elicit data than to elicit a prior. Such elicited data can then be used to
supplement the hard, observed data to possibly improve precision of statistical analyses. The approach suggested
here also leads to a natural definition of what constitutes a useful expert. We define a useful expert as one whose
opinion adds information over and above what is provided by the observed data. This can be quantified in terms of
the change in the Fisher information before and after using the expert opinion. One can, thus, avoid the real
possibility of using an expert opinion that adds noise, instead of information, to the hard data. We illustrate this
approach using an ecological problem of modeling and predicting occurrence of species. An interesting outcome of
this analysis is that statistical thinking helps discriminate between a useful expert and a not so useful expert;
expertness need not be decided purely on the basis of experience, fame, or such qualitative characteristics.
Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ecologists are increasingly interested in models of ecosystems that relate the probability of occurrence

of species to habitat characteristics (Scott et al., 1993; Guisan and Zimmerman, 2000; Fleishman et al.,

2001; Scott et al., 2002). Ideally, in these studies managers have access to hard data such as field studies

where presence or absence of species along with the associated habitat characteristics is measured. If
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such data are available, logistic regression is the natural approach to modeling the probability of

presence of a species as a function of habitat covariates. The logistic model has proven its effectiveness

in multitude of situations that require modeling of binary data with covariates (Collett, 1991; Hosmer

and Lemeshow, 2000) and ecological problems are no exception. However, in practice, estimation of

the parameters in Logistic Regression model can be quite difficult if the number of important covariates

is large compared to the number of observations (Fleishman et al., 2001). Analysis of rare species also

poses a problem. If the number of locations where the species is present is small compared to the

number of surveyed locations, then the parameter estimates are quite inaccurate with large standard

errors.

Given the enormous costs in terms of time, human effort, and money involved in conducting

ecological surveys, observed data are almost always in short supply but usually some untapped expert

information is available. Such information is acquired through years of observations and accumulation

of general biological knowledge. However, this information is not in the form of hard data but is in the

form of opinions and thoughts. The goal of this paper is to suggest a way to exploit this knowledge,

provided it is truly useful, to improve the estimation accuracy of logistic regression. These estimates are

useful for making effective management decisions about which resources are important for the species

under consideration. In addition improved estimates lead to increased accuracy of the predictions as

well.

The outline of the paper is as follows. First, we describe the biological situation that motivated this

paper. Then issues surrounding elicitation of expert opinion and its incorporation in statistical analysis

are discussed. A new approach to incorporate expert opinion, based on elicited data, is proposed. Some

theoretical results related to the statistical model, estimation procedure, quantification of the

informativeness of the expert, and combining expert opinion are discussed. This is followed by the

analysis of the occurrence data on four small mammals (shrews and voles) in Montana. Three different

experts provided their best guesses on the occurrence of four different species at a given set of locations

based on their knowledge. Two of these experts were ecologists familiar with the species and the

study area. The third expert was the GAP analysis program (Scott et al., 1993, 2000, http://

www.gap.uidaho.edu) that provided the set of predictions. The human experts as well as the GAP

analysis program had access to the habitat characteristics at these locations, but they did not know the

true state of the occurrence of the species at these locations. Using the method described in the paper,

we compare and contrast these experts in terms of their informativeness. It is shown that a useful expert

improves the estimation accuracy as quantified in terms of the standard errors of the estimators and the

width of the confidence intervals. Improved estimation leads to improved predictive accuracy of the

model. We also illustrate how combining two experts can be either beneficial or detrimental depending

on the relationship between the experts. We discuss some further practical issues such as handling of

measurement error in the species occurrence data. The paper concludes with summary comments.

Although the example discussed in this paper is for binary data, the methodology can be extended to

other types of data. The methodology discussed in this paper is also useful in other fields such as

satellite image analysis and classification, medical diagnostics, etc.

2. A MOTIVATING EXAMPLE

The scientific problem of interest we consider is quite simple: the prediction of the presence or the

absence of the shrews and voles across the state of Montana. Shrews are the smallest of the mammalian

predators, some as tiny as a human thumb. They hunt insects and other invertebrates such as
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earthworms, ants, spiders, and centipedes. The combination of their small size (masked shrews weigh

between 2.5 and 5.5 g), high metabolism, and carnivorous habits make them potentially good indicator

species. Toxins in the environment may accumulate quite rapidly in shrews because of their small size,

large appetites, and high position in the food chain as compared to most small mammals. Seasonal and

environmental changes can affect their survival significantly by altering availability of both prey and

preferred habitats. High rates of reproduction coupled with vulnerability to environmental change

results in constantly expanding and contracting local populations (Nagorsen, 1996; Wilson and Ruff,

1999). Masked shrews in particular occur throughout Alaska, Canada, and the northern regions of the

United States. They tend to proliferate most successfully in damp habitats and are found throughout the

state of Montana. Their wide range coupled with certain habitat requirements makes them an ideal

species for the purpose of this paper.

Habitat covariates were collected for 158 locations spread throughout the state of Montana. Actual

presence-absence measurements were collected at 56 sites (Allen et al., 1997). The 56 sites sampled

included a wide range of physical and spatial diversity. The variety of habitats ranged from flat arid

grasslands to steep lush forests and from alpine meadows to windswept shrub lands. A total of four

habitat covariates (elevation, precipitation, latitude, and longitude) are used in this paper. Elevation

measures the height above sea level in feet. Elevations in Montana ranged from 2000 to 10 900 feet,

with the median being 3600 feet. Precipitation is annual precipitation measured in inches. It

ranged from 6 to 80 inches, with a median of 12 inches. Latitude and longitude are proposed

as proxy for ‘all other’ habitat characteristics. Latitude ranges from 44 to 49 and longitude

from �104 to �1158.
The goal of this study was to estimate the logistic regression model that relates the habitat covariates

to the probability of presence of a species at a given location. This may then be used to predict the

presence or absence of the masked shrew at the locations where they were not trapped or, in general, it

may be used to predict the effect of habitat changes on the probability of the presence of a species. For

further examples of such studies, see Fleishman et al., (2001) and references therein. One can, of

course, simply use the logistic regression or an objective Bayesian version of the logistic regression to

solve this problem (Hepinstal and Sader, 1997; Fleishman et al., 2001). In this paper we show how

expert opinion, if obtained properly, can be used to supplement the logistic-regression approach in a

frequentist manner.

3. ON USING EXPERT OPINION

One of the commonly suggested approaches for incorporating expert opinion is the (subjective)

Bayesian approach. Hence, we begin by reviewing this approach to incorporating expert opinion into

statistical models by eliciting prior distributions of the parameters in the statistical model.

The Bayesian paradigm is the natural and often the standard method for incorporating expert

opinion into statistical models (Kadane et al., 1980; Genest and Zidek, 1986; DeGroot, 1988;

Steffey, 1992). In this approach, the basic idea is to obtain from experts their prior beliefs regarding

the possible values of the parameters in the statistical model. These prior beliefs are quantified in

terms of a probability distribution, called the ‘prior distribution.’ In the modeling process, this

distribution is then modified in the light of the hard data to obtain the ‘posterior distribution’ using the

Bayes theorem. The posterior distribution signifies the changed beliefs about the parameter values in

the light of the data. The posterior distribution is then used for inference about parameters and for

prediction.
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Many scientists, statisticians, and philosophers feel uncomfortable with the Bayesian approach,

especially the subjective Bayesian approach. For a summary of these arguments see, for example, Efron

(1986), Dennis (1996), Mayo (1996), Royall (1997), Lele and Das (2000), Lele (2004). For a balanced

and unbiased version of these arguments, along with the discussion of the issues associated with the

objective Bayesian approach, see Chapter 6 of Barnett (1999) or Chapter 5 of Press (2003). Of course,

frequentist approach as advocated by the Neyman–Pearson–Fisher school of thought is not without its

distractors. For example, see Berger (1985), Royall (1997), and various papers in Taper and Lele

(2004). Aside from the foundational arguments, from a purely operational point of view, there are two

further major issues in the implementation of the subjective Bayesian approach.

(a) Quantification of the expert opinion in terms of prior distributions: It is well accepted by the

practitioners that quantification of a prior belief in the form of a probability distribution is a

complex problem (Garthwaite and Dickey, 1992). Paraphrasing Yang and Berger (1997) one can

summarize the difficulties succinctly as follows.

(i) Frequently, elicitation of subjective prior distributions is impossible, because of time or cost

limitations, or resistance or lack of training of clients.

(ii) Subjective elicitation can easily result in poor prior distributions, because of systematic

elicitation bias and the fact that elicitation typically yields only a few features of the prior,

with the rest of the prior (e.g., its functional form) being chosen in a convenient, but possibly,

inappropriate, way.

(iii) In high dimensional problems, the best one can typically hope for is to develop subjective

priors for the ‘important’ parameters, with the unimportant or nuisance parameters being

given non-informative priors.

We provide further discussion of the problem of elicitation of the expert opinion in Section 8.

Nevertheless, West (1988) observes that ‘. . .it is often (or rather, always) difficult to elicit a full

distribution with which an expert is totally comfortable.’

(b) Quantification of the informativeness of an expert: From a purely operational point of view, it is

hard to imagine that all experts are equally informative about the phenomenon under consideration.

Thus it is important to quantify the informativeness of an expert. It is quite possible that an expert,

albeit unintentionally, might end up adding noise instead of real information to the hard data. One

needs a mechanism to discriminate between experts and then weigh the expert opinion according to

its usefulness in the statistical analysis.

The methodology discussed in this paper attempts to address these two issues specifically.

4. ELICIT DATA, NOT PRIOR

Why is it so difficult to elicit a prior distribution? It is important to recognize that the concept of a prior

probability distribution on the parameters of a statistical model is a statistical construct that is hard for

most scientists to visualize. This makes it difficult for scientists to express their opinions in a precise,

clear, and consistent fashion. Thus, it is important that a mechanism be devised that will facilitate

scientists to express their opinions in a practical fashion.

If the elicitation of priors is so difficult for the experts in the field, what is more practical? What kind

of information can we realistically obtain from an expert with comparative ease? It is often natural for

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 683–704

686 S. R. LELE AND K. L. ALLEN



an expert to think in terms of the process or the observations under study. A sensible approach is to ask

the expert to provide guess values for the quantities that they are most comfortable with, the observable

data itself. For a similar sentiment, see Kadane et al. (1980) or Kadane and Wolfson (1998). What do

we mean by this? Consider some practical situations. Suppose we want to predict and map the

presence-absence of a particular species, say the masked shrew (Sorex Cinereus). Unfortunately, we do

not have enough money to survey every location. However, we may have substantial information on the

habitat characteristics at all locations of interest. For example, we may have satellite images for the area

depicting the habitat characteristics. Given these images, it is not an impossible task for an expert to

provide a guess about the presence or absence of the species at all given locations. In essence, the expert

is providing his/her map of the presence-absence of the masked shrew (sorex cinereus) at the locations

of interest. Similarly for pollutant contamination surveys, experts can use geo-morphological features,

soil type, etc. to provide their guess as to whether contamination will be above or below a given

threshold. This is apparently quite operational. For example, the possibility of using such expert

guesses to improve kriging predictions in geological studies was earlier suggested by two geologists

(and, not theoretical statisticians) Kulkarni (1984) and Journel (1986). Also a recent paper by McCoy

et al. (1999) discusses the application of ‘educated guesses’ in predicting optimal habitats for sand

skink, Neoseps reynoldsi. We can then conclude that it is operationally easier to obtain the guess values

of the observable data than a prior distribution on the parameters of a statistical model. The ease with

which we obtained the expert opinion for this paper also attests to the fact that eliciting data from

experts is not a difficult task.

Suppose we obtain these guess values from several experts. How should we quantify the

informativeness of each expert? To address this issue, we need to develop a statistical model. We will

undertake that in the next section.

5. STATISTICAL MODEL FOR COMBINING EXPERT

GUESSES WITH OBSERVED DATA

Suppose there are N locations at which we have obtained the expert guesses. Let a subset of these

locations of size n be such that we also have the knowledge of the actual observations. Let us denote the

expert guesses by E1, E2, . . . , EN. Let the actual observations be denoted by O1, O2, . . . , On. Let us

denote the covariate vectors at the N locations by X1, X2, . . . , XN. Let us assume that Oi jXi� f (., Xi,
b) be independent random variables. Let us assume that the expert guesses are related to the true
state of nature at those locations by the model Ei jOi� g(.,Oi, h) and are (conditionally onO’s and
X’s) independent of each other. Hence the marginal distribution of the expert guesses can be
written as hðE;b; hÞ ¼ R

gðE jO; hÞf ðO;X;bÞdO.
The setup described above is a hierarchical model setup used commonly in the measurement error

models (Carlin and Louis, 1996). Essentially one can look upon the expert guesses as measurement

error introduced observations. Using the first n observations, where we know the truth, one can

estimate the measurement error model parameters h. Once the measurement error model parameters

are estimated, one can then use the additional N� n observations to supplement the original n

observations to possibly improve the statistical inference. The extent of improvement depends on

how accurately the measurement error model parameters are estimated, the extent of the

measurement error and the number N� n of additional observations. All of this can be made

mathematically precise as follows.
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6. ESTIMATION OF THE PARAMETERS AND QUANTIFYING

INFORMATIVENESS OF THE EXPERT

Given the model description above, we can write down the likelihood function as:

Lðb; h;O;E;XÞ ¼
Yn
i¼1

gðEi j Oi; hÞ
Yn
i¼1

f ðOi;Xi;bÞ
YN

i¼nþ1

hðEi;Xi;b; hÞ (6.1)

One can obtain the full-likelihood estimators of the parameters by maximizing this function. Or,

alternatively, one can maximize the first component with respect to the parameter h and obtain ĥ. The

second component could then be maximized with respect to the parameter b, holding h ¼ ĥ. This
second approach corresponds to the pseudo maximum likelihood approach studied by Gong and

Samaniego (1981). Both approaches lead to consistent and asymptotically normal estimators under

standard regularity conditions and the condition that n!1 and N¼Kn with fixed K. Appendix 1

provides the exact conditions for consistency and asymptotic normality under the pseudo maximum-

likelihood setup. The proof essentially follows the argument given by Bradley and Hart (1962) or

Fahrmeir and Kaufmann (1985).

We can also write down the likelihood function for b using only the observed data as

Lnðb;O;XÞ ¼
Qn

i¼1 f ðOi;Xi;bÞ. This can be maximized to obtain the maximum-likelihood estimator

of b based only on the observed data. The consistency and asymptotic normality of the maximum-

likelihood estimator can be proved using standard regularity conditions and the argument as outlined,

for example, in Bradley and Hart (1962) or Fahrmeir and Kaufmann (1985). Given the consistency and

asymptotic normality of these estimators, we are now in a position to decide if the expert guesses are

informative or not.

Let us denote the Fisher information about b, when only the observed data are used, by:

InðbÞ ¼ Eð� @2

@b2
log

Qn
i¼1 f ðOi;Xi;bÞÞ. The asymptotic variance of the estimator of b using only the

observed data is obtained by the inverse of the Fisher information matrix. We can also compute the

Fisher information of (b,h) based on the full-likelihood function (Equation (6.1)) that incorporates

the expert-guesses. This can be inverted and the asymptotic variance of the estimator of b based on the

combination of observed data and expert guesses can be computed. Due to the costs involved in

the estimation of the nuisance parameters h, this asymptotic variance is, in general, not guaranteed to be

smaller than the one based only on the observed data. However, by using the expert guesses, we are also

increasing the sample size from n to N. Thus, the introduction of the nuisance parameters h does not

simply increase the cost of estimation but also comes with the benefit of a larger sample size. It is the

balance between these two that decides if the expert guesses are useful or not. Thus, we define an expert

to be useful if his/her guesses reduce the variance of the estimator of the parameters of interest b. If one

uses the pseudo-likelihood estimator, one can compare the corresponding variance of bwith that of the

variance of b based only on the observed data. If the variance is reduced, the expert is useful; if not, the

expert is not useful and may not be used in the statistical analysis.

6.1. Combining expert opinion

Suppose we have two or more experts who have provided their guesses. It is easy to combine these

opinions in the framework discussed earlier. We can simply write down the likelihood using the data
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ðOn;E1N ;E2NÞ as follows.

L1 ¼
Yn
i¼1

g1ðE1i jOi; h1Þ
Yn
i¼1

g2ðE2i jOi; h2Þ

L2 ¼
Yn
i¼1

f ðOi;Xi;bÞ
YN

i¼nþ1

hðE1i;E2i;Xi;b; h1; h2Þ

where hðE1;E2;b; h1; h2Þ ¼
R
gðE1jO; h1ÞgðE2jO; h2Þf ðO;X;bÞdO

The likelihood function is given by L(b, h1, h2;O, E1, E2, X)¼L1�L2.

The main assumption here is that the expert opinions, conditional on the true state of nature, are

independent. Of course, marginally they will not be independent. We can assess the usefulness of the

expert using the Fisher information as discussed previously. When combining experts, we pay the price

of estimating more nuisance parameters and so unless there is a substantial and supplementary effect of

the two experts, the combined expert need not always be a better expert than a single expert. Just as

(weighted) averaging of two different estimators of the same parameter leads to a better estimator only

under certain conditions; combining two experts leads to a better estimator only under certain

conditions. These conditions are hard to specify in precise form except for simple cases. Essentially

they relate to the amount of information about the parameter of interest in the conditional distribution of

E2 jE1. We do not attempt to do it in this paper.

In the following, we will analyze one simple but instructive particular case. This will illustrate the

conditions under which using the expert guesses may or may not reduce the variance of the estimator. It

also illustrates an interesting phenomenon that even an expert whose opinions are negatively correlated

with the true observations is useful. Thus, any association between the expert opinion and the true state

of nature is information. Aside from this instructive case, we also introduce the model that will be used

to analyze the biological dataset described in Section 2.

6.2. Some particular cases

6.2.1. Normal–Normal case. Let us consider a simple model where Oi � Nðm; s2Þ for i¼ 1, 2, . . . , n
and Ei jOi � NðhOi; 1Þ for i¼ 1, 2, . . . , N. It then follows that the marginal distribution of the expert

guesses is given by Ei�N(hm,1þ h2s2).

Let us start with assuming known s2 and h. The score functions for m with and without the expert

opinion are respectively given by

ðaÞ
Xn
i¼1

ðOi � mÞ ¼ 0 and ðbÞ
Xn
i¼1

ðOi � mÞ þ h

1þ h2s2

XN
i¼nþ1

ðEi � hmÞ ¼ 0

The corresponding Fisher information is given by

ðaÞ InðmÞ ¼ n

s2
and ðbÞ INðmÞ ¼

nþ ðN�nÞh2
ð1þh2s2Þ

� �2

ns2 þ ðN�nÞh2
ð1þh2s2Þ

� �

We note some interesting features below.
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(i) If N¼ n, then IN(m)¼ In(m) as one would expect.

(ii) If the parameter h¼ 0, IN(m)¼ In(m). That is, one neither gains nor loses by using the expert

guesses that are uncorrelated with the actual phenomenon. Of course, this is the case only if we

know the value of h. In practice, we need to estimate this parameter and hence if the expert guess

is, in fact, uncorrelated with the observations, we lose by using such an expert. An expert who adds

noise to the hard data can deteriorate the inferences.

(iii) The Fisher information based on the expert guesses and observed data is a symmetric function of

the parameter h. Thus any association between the expert’s guesses and observed data is useful.

Even a negatively correlated expert guess is useful.

Now let us study the exact conditions under which the expert guesses increase the Fisher information

about the parameter m.
Let N¼Kn and assume that K> 1. Consider the ratio of the two Fisher informations:

INðmÞ
InðmÞ ¼

nþ nðK�1Þh2
ð1þh2s2Þ

� �2

ns2 þ nðK�1Þh2
ð1þh2s2Þ

� � :
s2

n

For further algebraic simplicity, let us assume that h¼ 1. Then this ratio reduces to

INðmÞ
InðmÞ ¼

1þ ðK�1Þ
ð1þs2Þ

� �2

1þ ðK�1Þ
ð1þs2Þs2

� �

This ratio is not always larger than one. For example, suppose s2¼ 0, that is, the original

observations Oi’s provide perfect knowledge about the value of m. Clearly, if we ‘contaminate’ these

perfect observations with imperfect observations, the expert guesses Ei’s that have variance one, we

cannot expect the resultant estimator of m to be better. Of course, this is an extreme example. On the

other hand, suppose s2¼ 1, then any K> 1 provides improvement; larger the K, larger is the

improvement. For a given value of s2, we can determine the number of expert guesses, the value of N,

which will ensure that the Fisher information is larger when we use them than when we use only the

observed data. In Figure 1, we plot the values of K, as a function of s2, that ensure increase in the Fisher
information. For example, suppose s2¼ 0.2, this plot suggests that we need at least N¼ 5.8n expert

guesses in order to gain information above and beyond what is provided by the hard data. That is, if we

can get expert guesses for N> 5.8n values (and the assumed model is correct), we can improve the

estimator of m, otherwise we may, in fact, deteriorate the original estimator. Expert opinion does not

(neither can we expect to) always improve the situation. If the expert ends up adding more noise than

signal to the information at hand, then he/she can be harmful instead of being helpful.

Now instead of known h, we consider estimating this parameter using the first n observations. We

assume that the parameter s2¼ 1 for the sake of exposition. In practice, we will need to estimate that

parameter as well.

Step 1: Estimate the parameter h using the first component of the full likelihood, namely,

Yn
i¼1

gðEi jOi; hÞ
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In the Normal–Normal case we are studying, this estimator can be written explicitly as

ĥ ¼
Pn

i¼1
EiOiPn

i¼1
O2
i

Step 2: Fix the value of h ¼ ĥ and maximize the last two components of the likelihood, namely,

Yn
i¼1

f ðOi;Xi;bÞ
YN

i¼nþ1

hðEi;Xi;b; ĥÞ

with respect to b.

Figure 1. Sample size required for guaranteeing increase in the Fisher information. For example, when s2¼ 0.2, we need at

least N¼ 5.8n number of expert guesses to guarantee an increase. Thus, if n¼ 10, we need N� 59, to assure that expert guesses

will increase the accuracy of the estimator. If N� 58 then, in fact, using of expert guesses will deteriorate the original estimator

based on the observed data of size n¼ 10
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This corresponds to the pseudo-likelihood estimator as described in Gong and Samaniego (1981). In

the Normal–Normal case, it is easy to see that the pseudo-likelihood estimator of m is given by solving

the equation

Xn
i¼1

ðOi � mÞ þ ĥ

1þ ĥ2

XN
i¼nþ1

ðEi � ĥmÞ ¼ 0:

This can be explicitly written as

m̂NðĥÞ ¼
Pn

i¼1 Oi þ ĥ
1þĥ2

PN
i¼nþ1 Ei

nþ ðN�nÞĥ2
ð1þĥ2Þ

:

Application of the Slutsky’s theorem (Serfling, 1980) along with the consistency of ĥ, shows that this

estimator is consistent form as n!1 andN¼Kn for some fixedK. The finite sample properties such as

unbiasedness or mean squared error seem difficult to compute analytically. Whether and by how much

this estimator is better than the estimator based only on the observed data depends on the variance of the

estimator of h and the value of K. Smaller the variance and larger the value of K, larger are the gains. If

the variance is large and K is small, we may, in fact, do worse by using this estimator. In that case, the

expert opinion is adding noise to the hard data. In such a case, we are better off not using the expert

opinion.

This model also illustrates the fact that one cannot collect only the expert opinion and obtain lots of

information about the parameter of interest without any real data collection. For the model considered

above notice that the marginal distribution Ei � Nðhm; 1þ h2s2Þ does not allow identification of the

parameters ðh;m; s2Þ. Thus, given only the expert guesses, one can obtain no information on the

parameters of interest, namely ðm; s2Þ, let aside estimating them well.

6.2.2. Bernoulli–Bernoulli case. We now describe the model that will be used to conduct the real data

analysis. In this case, both the observations and the expert guesses are binary. We also have covariates

corresponding to each, sampled as well as not sampled, location.

Oi � BernoulliðpiÞwhere log
pi

1� pi
¼ XT

i b

Ei jOi � BernoulliðpiÞwhere log
pi

1� pi

¼ h0 þ h1Oi

The marginal distribution of Ei is given by:

PðEi ¼ 1Þ ¼ PðEi ¼ 1 jOi ¼ 0ÞPðOi ¼ 0Þ þ PðEi ¼ 1 jOi ¼ 1ÞPðOi ¼ 1Þ
The parameters h0 and h1 inform us about the characteristics of the expert. Clearly if h1¼ 0, expert

guesses are unrelated to the actual state of the process. Such an expert cannot, in general, be useful. The

usefulness of the expert in the binary data case depends on how often the expert guesses 0’s as 0’s and

1’s as 1’s. This corresponds to the sensitivity and specificity of the expert guesses. Of course, not only
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the values of these parameters but also the accuracy of the estimator of these parameters as well as

the accuracy of the estimator based only on the observed data play a role in the actual determination

of the ‘usefulness’ of the expert as discussed previously. We will see an example of this in the

Section 7.

One can use the maximum-likelihood estimators for obtaining the estimator of the regression

parameters b using only the observed data. These can be obtained using any of the standard programs.

The pseudo-likelihood estimator of the regression parameter b can be obtained by first estimating the

parameter h using the n observations, where we have the information on Oi’s as well as Ei’s. This is

simply the maximum-likelihood estimation using the Logistic Regression model. Then one can

maximize the following function with respect to b, with h ¼ ĥ.

Lðb; ĥ;O;E;XÞ ¼
Yn
i¼1

f ðOi jXi;bÞ
YN

i¼nþ1

hðEi jXi;b;ĥÞ

According to our experience, pseudo-likelihood estimator seems numerically easier to obtain than

the maximum-likelihood estimator, especially if the number of covariates is substantial. This is also

indicated in Gong and Samaniego (1981).

To decide if and by how much the expert opinion is useful, one can compute the Fisher

information with and without expert opinion. Alternatively, one can compute the parametric

bootstrap-based standard errors or confidence intervals and compare them. If the expert opinion

leads to a reduction in the standard error or reduction in the lengths of the confidence intervals, it

should be deemed useful. In the following analysis, we will use the length of the bootstrap

confidence interval to measure the usefulness of the experts. We use simple parametric bootstrap

percentile confidence intervals (Efron and Tibshirani, 1994). These confidence intervals are known

to be valid, that is, they have proper coverage properties. Hence we do not compare the coverage but

their lengths. We use the parametric bootstrap confidence intervals instead of the Fisher information

because they seem more relevant in finite sample situations. In the limit, of course, they reflect the

comparison of Fisher information.

7. ANALYSIS OF THE SPECIES OCCURRENCE EXAMPLE

Recall that we have a total of 158 locations out of which 56 were sampled. In the following, we assume

that at the sampled locations, the presence of a species is an actual presence (no misclassification) and

absence is a true absence. The method to deal with the measurement error in these observations will be

discussed in the next section. The covariates, elevation, precipitation, latitude, and longitude are known

at all 158 locations.

We recruited three experts to obtain the expert guesses. Of our three experts, two were university

faculty members specializing in small mammals in the region. The third ‘expert’ was a model called

GAP that utilizes various layers of biological information for the state (and surrounding watersheds)

and an independent database of small mammals. Kristie Allen, a graduate student in the Department of

Biology at The Montana State University, conducted the interviews with these experts and also

obtained the predictions from the GAP model. With a Master’s degree in Statistics, her training in

statistics was adequate for the field of biology, however she had had no special training in eliciting
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information. For each of the 158 locations, she asked the expert to provide a prediction: Is a particular

species of shrews present or absent at that location? The question was easy to convey and easily

understood by non-statisticians such as these ecologists and a computer program as well. The ease of

communication was due largely to the fact that the question is posed on the same scale as the underlying

ecological question. The experts were provided with the covariates and asked to predict the presence of

the masked shrew on all 158 sites. We used the Binary-Binary model described in the previous section

to conduct the analyses.

Initially standard analysis of the data from the 58 sampled locations was conducted. For each of

the species, standard logistic regression analysis was conducted using the ‘glm’ command in R

software (Ihaka and Gentleman, 1996). The relevant covariates were chosen using the stepwise Akaike

information criterion (‘stepAIC’ function in R program with MASS library attached). For none of the

species, latitude was an important covariate. We used parametric bootstrap (1000 bootstrap samples)

with the percentile method to obtain confidence intervals for each of the parameters. To study the

usefulness of the experts, we then augmented the sampled data with the expert guesses. Estimation of

the parameters was conducted using the pseudo-likelihood method described in the previous section.

We used ‘optim’ function with Nelder–Mead algorithm to maximize the pseudo-likelihood function. In

Tables 1–4, we describe the results. In these tables, we report the estimates of the parameters h and b,

and the ratio of the length of the confidence intervals for b based on the expert opinion and the one

based only on the sampled locations. Smaller the ratio, shorter the interval when expert opinion is used

and hence more useful is the expert.

Following major points may be noted:

(1) Not all experts are equally useful: It is clear that Expert A is, in general, most useful because it

reduces the length of the confidence interval the most. It seems that Expert B adds almost nothing

to the information (except Species 4) whereas Expert C is somewhere between the other two

experts. This can be determined solely based on the statistical analysis without recourse to

subjective opinions based on fame, experience and so on. To complete the story, after the analysis,

we wanted to find out who the experts were and to see if the statistical analysis of their expertness

made sense in reality or not. As it turns out, Expert A is a well known researcher in the field; Expert

B, on the other hand, is more of a Geographic Information Systems expert rather than a field expert.

Table 1. Analysis of Sorex Cinereus with and without the expert opinion

Covariate GLM Expert A Expert B Expert C

Reliability
0! 0 — 0.7235 0.90 0.96
1! 1 0.6667 0 0.22

Intercept �71.051 �56.5366 �72.7998 �62.009
(�168.73, 37.74) (0.7402) (0.9549) (0.8804)

Longitude �0.5970 �0.4693 �0.608 �0.5192
(�1.43,� 0.30) (0.7305) (0.9561) (0.8800)

Elevation 0.000634 0.0005722 �0.000693 �0.0005077
(�0.000259, 0.00185) (0.7394) (0.9590) (0.7577)

The number in bold indicate the ratio of the length of the confidence interval with expert opinion to that without expert opinion.
Expert A is the most useful, Expert B is almost ineffective, and Expert C is somewhere in between. Parameter estimates do seem
to change with or without the expert opinion.
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Expert C is the GAP analysis program. It is satisfying to know that this agrees well with what one

finds out from the statistical analysis.

(2) An expert may not be useful in every situation: An expert who is useful for one species need not

always be useful for another species. For example, Expert A is much more useful for Sorex

Cinereus and Sorex Vagrans, but not so useful for Sorex Montanus. On the other hand, Expert B is

quite a bit more useful for species Sorex Montanus as compared to other species.

(3) A not so useful expert does not affect the analysis adversely: At least when n is reasonable, that is

when we can calibrate the expert well, a not useful expert does not seem to affect the results

adversely. This is remarkable and quite useful from the practical point of view. Probably an

analogous result in the subjective Bayesian analysis is that the effect of prior goes away as the

sample size increases.

(4) Same value of h may lead to different amount of usefulness: Notice that for Species 2 and 3, for

expert A the values of h are quite similar. However this expert was very useful for Species 2 but not

useful for Species 3. This is because the number of covariates for Species 3 is only one,

Table 2. Analysis of Sorex Vagrans with and without the expert opinion

Covariate GLM Expert A Expert B Expert C

Reliability
0! 0 — 1 0.865 0.946
1! 1 0.3158 0.05 0.3158

Intercept �49.817 �19.1620 �48.5453 �34.0188
�104.856 0.4900 1.0136 0.7553
�26.955

Longitude �0.4339 �0.1611 �0.4206 �0.2903
�0.9237 0.4915 1.0057 0.7526
�0.2235

Precipitation 0.07654 0.05662 0.0813 0.06324
0.01978 0.6929 1.1347 0.7595
0.1990

The number in bold indicate the ratio of the length of the confidence interval with expert opinion to that without expert opinion.
Smaller the number more is the gain. Expert A is substantially more useful for this species than Sorex Cinereus, Expert B is
ineffective, almost detrimental, and Expert C is somewhere in between. Parameter estimates do seem to change quite a bit with the
expert opinion.

Table 3. Analysis of Clethrionomys gapperi with and without the expert opinion

Covariate GLM Expert A Expert B Expert C

Reliability h — 0.8905 0.730 0.8685
0.3889 0.111 0.2778

Intercept �1.3930 �1.2608 �1.4804 �1.4650
(2.417, �0.689) 0.9988 1.1055 1.0132

Precipitation 0.03336 0.03275 0.03332 0.03609
(0.0020, 0.087) 0.9263 0.9888 0.9615

The number in bold indicate the ratio of the length of the confidence interval with expert opinion to that without expert opinion.
None of the experts seem to make much difference in the inference. This is probably because we only have one parameter in this
model and the estimates based on the observed data are already quite good.
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precipitation. The original estimates based only on the observed data are quite good. Recall from

our simple Normal–Normal example in Section 6 that it is not just the value of h that determines the

usefulness of an expert but also the accuracy with which observed data based estimators are

obtained. It is difficult to improve upon a highly accurate estimator as compared to not so highly

accurate estimator. For Species 2, we have two covariates. The estimators based on the observed

data were not very accurate and hence the same value of h led to a substantial improvement. Recall

also that the improvement is not only a function of h and N, but is also a function of the design

matrix X which determines the accuracy of the estimator obtained using the observed data as well

as the expert guesses. See Lele and Das (2000) for an analysis in the context of linear model with

Normal errors.

We next consider the possibility of combining expert opinions to see if such combination leads to a

‘super-expert’. In Table 5, we present the results of combining two experts for analyzing Species 1 data.

It is clear from this table that one can either gain or lose as a consequence of combining experts. Clearly

if the experts are highly correlated with each other, they do not add substantial information to what is

available from one of them. On the other hand, if they are useful experts, we expect them to be

correlated however, if they are useful experts but not perfectly correlated, sometimes they may help

each other out. On the other hand, if they cancel each others’ strengths, we may, in fact, lead to a worse

expert than any one of them individually. This is borne out in the analysis quite clearly. Expert A and C

seem to help each other out, whereas Expert B is pulling others down.

A careful look at the tables would reveal that for one of the species (Sorex Vagrans), the regression

coefficient estimates using the expert opinion A, in particular, are quite different than the ones based

Table 4. Analysis of Sorex Montanus with and without the expert opinion

Covariate GLM Expert A Expert B Expert C

Reliability h — 0.86 0.92 0.72
0.1667 0.1667 0.1667

Intercept �61.8461 �61.7046 �68.6299 �56.18056
(�192.43, 22.70) 0.8232 0.7930 0.9494

Longitude �0.5517 �0.5507 �0.6148 �0.4996
(�1.748, �0.199) 0.8154 0.7781 0.9447

Precipitation �0.08173395 �0.0822 �0.0909 �0.0719
(�0.403, �0.026) 0.8671 0.9224 0.9994

Notice that Expert B is the best of all the experts for this species. This is in contrast to the performance for other species where
generally Experts A and C were better.

Table 5. Efficiency gain after combining two experts

Covariates Experts (AþB) Experts (AþC) Expert (BþC)

Intercept 0.8291640 0.6974174 0.9524402
Longitude 0.8297462 0.6998052 0.9400040
Elevation 0.7274376 0.5907153 0.7584286

These results are only for SorexCinerus. Combining Experts A and C leads to shorter confidence intervals whereas combining
Experts A and B or Experts C and B leads to deterioration of Experts A and C, respectively. Combining experts does not always
lead to a better expert.
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only on the observed data. Although the confidence intervals are substantially smaller when Expert A

guesses are used, one may feel uneasy about the substantial change in the estimates. For larger values of

n, given the consistency of the estimators, we do not expect this to be a problem but for small to medium

sample sizes this could happen. Which model should we choose to use in this case, one with the expert

opinion or the one without the expert opinion? Since both are binary data models, one can compare

their receiver operating characteristic curves (ROC). If the curves are comparable or if one with the

expert opinion A always dominates the one with observed data only, we have additional confidence in

the model estimated using the expert opinion. In Figure 2, we show the comparison of ROC curves for

all four species, for three experts and the observation only based model. In all four cases, it is clear that

Figure 2. Comparison of ROC curves based on the fitted Logistic Regression models with only observed data and with the

expert opinion. Although some of the fitted models have different regression coefficients, the predictive performances are

comparable and the most useful expert generally has an ROC curve that dominates other ROC curves
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the ROC curves are quite comparable and in fact, similar to the conclusion drawn from the confidence

interval performance, the ROCs for the Expert A seem to dominate others, even in the case of Sorex

Vagrans. Although ROC is not the only way to compare performance of twomodels for binary data, it is

certainly a reasonable method. These comparisons indicate that the model based on the expert opinion,

although its regression coefficient estimates are quite different, is a reasonable model.

Amajor concern with the presence-absence data is the possibility of false absences. Just because one

did not observe a species does not always mean the species is not present. Similarly there is a real

possibility of false identification of the species. The analysis presented thus far assumes that there is no

measurement error in the data. A necessary condition for the analysis of data with measurement error is

that one has replicate samples at each of the locations. Given these replicate samples, one can estimate

the probability of misclassification and hence correct for it. In the dataset that we analyze, such

replicate samples are unavailable and hence we could not take into account the measurement error.

However, if such replicate samples were available, one can modify the likelihood function accordingly.

(The details are algebraically complicated and hence are delegated to the Appendix.) One can then

estimate the parameters by maximum-likelihood method. The pseudo-likelihood method does not

seem to be applicable in this situation. The rest of the analysis as to the usefulness of an expert etc. can

be carried out in a similar fashion.

8. RELATIONSHIP WITH OTHER ELICITATION PROPOSALS

Effective elicitation of expert opinion has been addressed in the Bayesian literature (Winkler, 1967,

1981; Savage, 1971; French, 1980, 1985, 1986; Kadane et al., 1980; Dawid, 1982, 1987; Kahneman

et al., 1982; Lindley, 1983, 1985, 1988; Schervish, 1984; West, 1984, 1988, 1992; Genest and Schervish,

1985; West and Harrison, 1989, Chapter 15; West and Crosse, 1992; Chaloner, 1996; Kadane and

Wolfson, 1998; Clemen and Reilly, 2001; Winkler, 2003; Tversky and Kahneman, 1974). A special

issue of the Journal of the Royal Statistical Society, Series A (1998) was dedicated to the subject of

elicitation of information from experts. These papers along with the associated discussion provide an

excellent overview of the topic from the Bayesian perspective. In the following we summarize the main

features of the Bayesian approach to elicitation and compare it with the approach discussed in the present

paper.

(1) According to the schemes discussed in these papers, elicitation of the expert opinion is used to

construct priors that are used in the Bayesian framework of modifying the prior to posterior. It was

explicitly pointed out by Sir David Cox in the discussion of these papers (Cox, 1998) that the major

lacuna in these approaches is that the expert opinion is not calibrated. As a consequence such expert

opinion may get used even when it is not useful. The approach suggested in the present paper

pointedly addresses the issue raised by Sir David Cox by providing precise rule for determining if

the expert is useful or not and when to use the expert opinion.

(2) The papers by French (1980), Dawid (1982), DeGroot and Fienberg (1982) among others do

explicitly try to study the concept of calibration of an expert. However, these papers and papers by

Scheverish (1984), West and Crosse (1992) where an effort has been made to combine the expert

opinion with hard data do not provide how this calibration could be used to obtain optimal weights

in the combination of the expert opinion and the hard data. The approach suggested in the present

paper provides a natural way to combine the expert information with the hard data by using the

hierarchical model and the likelihood function.

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 683–704

698 S. R. LELE AND K. L. ALLEN



(3) All of these approaches suggest that the expert opinion be elicited in terms of the probabilities of an

event and not the prediction of the actual event. Thus, the hard data and the expert opinion are not

on comparable scales. This makes their combination a difficult task. It is also unclear whether the

elicited probabilities always satisfy the Kolmogorov axioms or not, and what to do if they are not

satisfied. These probabilities are also unlikely to satisfy the transformation rules. For example, if

one elicits the probability distribution of the random variable X and also from the same expert

elicits probability distribution for a transformation of X, say g(X), that these probability distribu-

tions are exact transformations of each other. On the other hand, eliciting data is likely to have less

chance of not being transformation invariant because it is easier to think in terms of observables

than probabilities.

In the light of the above discussion, elicitation of the expert opinion by eliciting guess values of the

realization and its combination with the hard data using hierarchical model and likelihood function is, at the

least, a feasible and attractive alternative to the elicitation methods proposed in the Bayesian literature.

9. CONCLUSION

This paper discusses the incorporation of expert opinion in statistical analysis in a frequentist fashion.

One of the major difficulties, as acknowledged and explained in detail by various papers referred to in

Section 8, with the incorporation of expert opinion lies in its elicitation. We suggest eliciting data rather

than eliciting priors, again reflecting sentiments expressed by Kadane et al. (1980), Kadane and

Wolfson (1998) among others. In the Bayesian approaches to elicitation of data, one either tries to

construct priors based on the expert guesses or tries to elicit probability distributions for the observed

values. On the other hand, in our proposal, we elicit expert information on the same scale as the

observables and hence one can combine them with the observed data using the likelihood function

directly. This method also allows for the incorporation of auxiliary information such as environmental

habitat characteristics easily. Such use of the auxiliary information is not seen in the Bayesian

elicitation approaches.We show that using the likelihood function and hierarchical model, one can then

calibrate the expert opinion with the observed data and use even a negatively associated expert. We

provide quantification for the ‘usefuleness’ of an expert in terms of gain in the Fisher information. One

advantage of this is that one does not have to argue ‘expertness’ on the basis of experience, fame, or

some such characteristics that may be open to debate. We illustrate that not all experts are alike; some

are more useful than others. Combining experts need not always lead to a super expert. Experts may

supplement each other or they may cancel each other out.

Eliciting data from the experts clearly involves additional work by the scientists. One has to obtain

information from the expert by conducting interviews. It is not a free lunch. However, if this additional work

is taken up and the expert is useful, the benefits can be substantial as shown in the analysis of the example. In

our experience, obtaining this additional information is not a difficult task.

It is legitimate, although debatable, to claim that when an expert provides an opinion about presence

or absence of a species, he/she has a probability in mind and not a binary outcome. One of the problems

in using the probability judgment, as against the binary outcome, is the difficulty in calibration against

the observed data. Since replication of theweather events or replication of the species presence-absence

events at the same location and at the same time is impossible; it is difficult to calibrate such probability

judgment. On the other hand, by eliciting information on the observable scale and using the regression
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model that relates elicited data to observed data, one can calibrate the expert opinion in the form of

elicited data quite easily.

There is a close connection between the methodology suggested in this paper and the method of

double sampling (Little and Rubin, 2002, Chapter 2). Suppose the characteristic of the population that

is of scientific interest is difficult to measure but there is another characteristic that is easy to measure

and is strongly related to the characteristic of interest. In ecological sampling, one can then survey a

large area for the simple to measure characteristic and survey a subset of that area for the characteristic

of interest as well. Then using the calibration techniques and the larger survey, one obtains a better

estimate of the characteristic of interest than one would with only the subsample. The expert opinion,

aside from measurement error introduced observation, can also be looked upon as ‘an easy to obtain’

information that is highly related to the characteristic of interest. This relationship opens up the

possibility of using the mathematical and computational machinery available in the missing data

literature for utilizing expert opinion.

The use of expert opinion in the form of elicited data also has something to offer back to the missing

data literature. For example, missing data, due to censoring, or drop-outs are a common phenomenon in

longitudinal data, panel data, or clinical trials. In many of these cases, it might be possible for the

physician to provide his/her guesses of the outcome. If these are validated against the observed data, as

outlined in this paper, they will help improve inferences over and above what is done using the standard

missing data techniques. Essentially, we will be adding information through physician’s opinions,

albeit calibrated against the complete data.

The methodology discussed in this paper is clearly model dependent. It is imperative that the usual

machinery for model selection and model diagnostics should be brought to bear on the problem. Such

an analysis will point out an expert who might be selectively misleading; for example, existence of

outliers will indicate such an expert. It will be interesting to see if semi-parametric methods such as

estimating functions can be used instead of the likelihood function in the context of incorporation of

elicited data. It will make this methodology somewhat model robust.
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APPENDIX: CONSISTENCY AND ASYMPTOTIC NORMALITY

OF THE PSEUDO-LIKELIHOOD ESTIMATORS

Notice that obtaining the pseudo-likelihood estimator corresponds to solving the following system of

estimating function.

@

@h
l1ðh;En;OnÞ ¼ 0

@

@b
l2ðb;On;XnÞ þ @

@b
l3ðb;EN�n;XN�nÞ ¼ 0

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 683–704

700 S. R. LELE AND K. L. ALLEN



Assuming the interchange of derivative and integration is allowed, the proof of zero unbiasedness is

standard (Casella and Berger, 1990)

Proving the existence of a consistent root and asymptotic normality for this set of estimating

functions depends on the application of Taylor series expansion, weak law of large numbers for

independent but not identically distributed random variables and the Lindberg–Feller central limit

theorem. Several different proofs with various conditions have been given in the literature in this

context. See, for example, Bradley and Hart (1962) and Fahrmeir and Kaufmann (1985). Here we will

use the proof given by Bradley and Hart (1962).

Assumptions

Let u ¼ ðh;bÞ denote the full parameter vector of size P� 1. Let us denote the parameter space by Q.
For notational simplicity, we ignore the underscore notation for the vector of a parameter. For all values

of the parameter space, assume that the following derivatives exist for all r, s, t¼ 1, 2, . . . , P.

@

@ur

@

@us
log f ðEi jOi; hÞ; @

@ur

@

@us
log f ðOi jXi;bÞ; @

@ur

@

@us
log f ðEi jXi;b; hÞ

@

@ur

@

@us

@

@ut
log f ðEi jXi;b; hÞ; @

@ur

@

@us

@

@ut
log f ðOi jXi;bÞ

@

@ur

@

@us

@

@ut
log f ðEi jXi;b; hÞ

Furthermore for all parameter values assume that

ð1Þ lim
n!1

1

n
E g1g

T
1

� � ! J2ðuÞ; lim
n!1

1

n
E g2g

T
2

� � ! J2ðuÞ
where J1ðuÞ; J2ðuÞ are positive definite matrices. Notice that Eðg1gT2 Þ ¼ 0. Also notice that the

sum involved in the matrix Eðg2gT
2
Þ is of order O(n) because of the assumption N¼Kn where K

is fixed.

ð2Þ lim
n!1

1

n
EðggTÞ ! IðuÞ;

a positive definite matrix. Notice that, considered as a partitioned matrix, this matrix is a lower

triangular matrix with diagonal matrices positive definite under the standard-likelihood theory. The

expectations of the third order derivatives are finite.

Given these conditions, one can mimic the proofs as given in Bradley and Hart (1962) to show consistency

and asymptotic normality of the pseudo-likelihood estimators. We do not reproduce the steps here.

INCORPORATION OF MEASUREMENT ERROR

In order to deal with the presence of measurement error, one needs replicate observations at each of the

locations. Let Zi¼ (Zi1, Zi2, . . . ,Zim) denote the replicate observations at the ith location. The data at

hand now consist of (E1, E2, . . . ,EN), the expert guesses, and (Z1, Z2, . . . ,Zn) where Zi¼ (Zi1,
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Zi2, . . . ,Zim). In seems natural to assume that given the true state of natureOi; Ei, and Zi are independent

of each other. Measurement error process has nothing to do with the process with which an expert

guesses the true state of nature. Under this assumption, the following results are straightforward. We

use f(.) as a generic notation for the probability function, instead of a clumsy notation with different

letters for each density.

f ðE; Z;X;b; h;aÞ ¼
Z

f ðE jOÞf ðZ jOÞf ðOÞdO

f ðE;X;b; hÞ ¼
Z

f ðE jOÞf ðOÞdO

f ðZ;X;b;aÞ ¼
Z

f ðZ jOÞf ðOÞdO

f ðE j ZÞ ¼ f ðE; ZÞ
f ðZÞ

Given this, we can then write down the likelihood as follows:

Lðb; h;a;E; ZÞ ¼
Yn
i¼1

f ðEi j Zi;Xi;a;b; hÞ
Yn
i¼1

f ðZi jXi;b;aÞ
YN

i¼nþ1

f ðEi;Xi; h;bÞ

Because there is no suitable decomposition of the likelihood as a function of h alone, as it was

available when there was no measurement error, one cannot use the pseudo-likelihood estimation

method. One has to maximize the full likelihood with respect to all the parameters (b, h, a). One can

possibly maximize the full likelihood iteratively as follows:

Step 1: Maximize the second component with respect to (a, b),

Step 2: Substitute these estimators in the likelihood function and maximize with respect to h.

Step 3: Substitute the estimator of h and maximize the full likelihood (not just the second component

as in Step 1) with respect to (a, b).

Step 4: Iterate through Steps 2 and 3, until convergence.

Because the estimators in Step 1 and 2 are consistent, this iteration scheme should lead to consistent

estimators, although we do not have formal proof for this result.
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