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ABSTRACT

The usual strategy for comparing biological shapes is to use

some kind of superimposition of the two forms under study and then look at the
“residuals” as the shape change. In this paper, I take a careful look at this
general strategy and point out some subtle but inherent and important
pitfalls. Additionally an alternative approach based on Euclidean Distance
Matrix representation is presented. It is applicable to two- as well as three-

dimensional objects.

One obvious manifestation of biological
processes such as growth, evolution, or ter-
atogenesis is change in the form of an object.
Form of an object involves both size and
shape. In order to quantitatively compare
forms and shapes we need a method for
cataloguing the forms under consideration.
Two types of data that are commonly used for
this procedure are landmark data and out-
line data. In this paper I consider analysis of
landmark data, although many of the com-
ments extend naturally to outline data.

Several different methods have been de-
veloFKed for comparing shapes using land-
mark data(e.g., Bookstein 1978, 1986; Siegel
and Benson, 1982; Goodall and Bose, 1987;
Lewis et al., 1980). The purpose of this paper
is to take a careful look at these approaches
and raise a few philosophical points with
important practical implications. This paper
also proposes a new method for comparing
forms based on Euclidean Distance Matrix
representation. The proposed method works
for three-dimensional objects and gives bio-
lo;.Izically interpretable quantities.

n this discussion, the form of the object
refers to the geometric representation of the
object by the landmarks. The curvature and
other features of the surfaces between land-
marks which may contain important infor-
mation about the form of an object are lost in
the analysis of landmark data. The limita-
tions of landmark data are recognized and
accepted throughout this paper.

For the sake of simplicity of exposition, I
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consider only the case in which one is com-
paring two objects for which landmark data
are available. Comparing forms or shapes of
two groups of objects is considered in Lele
and Richtsmeier (1991a,b). Throughout this
paper, form of an object is defined to be that
characteristic which remains invariant un-
der translation, rotation, and reflection of
the object. Shape is defined to be that char-
acteristic which remains invariant under
translation, rotation, reflection, and scaling.

SUPERIMPOSITION METHODS

With the exception of Finite Element Scal-
ing Analysis (Lewis et al., 1980), almost all
morphometric methods employ superimpo-
sition to calculate form or shape difference.
Let us look closely at how superimposition is
implemented for f’andmark ata. LetXandY
be two (K x 2) or (K x 3) matrices of land-
mark coordinates where K is the number of
landmarks. A general procedure for super-
imposition of these figures can be described
as follows:

Step 1: Fix one of the figures, say X, as the reference
figure.

Step 2: Select positive real valued functions ¢,(-)
called the loss functions,i = 1,2,..., K. Let
d(ix,iy) be the distance between landmark :
in figure X and figure Y, respectively.
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Step 3: T}'{anslate and rotate figure Y so that
Z &;ld(i, iy)] is minimized.

i=1
Step 4: If one wants only the shape difference, scale

K
the figure Y so that Z ¢ [d(i, iy)] is mini-
mized. i=1

Following are two examples of the loss func-
tions (bi(-§.

1. Ordinary Procrustes Analysis (Goodall
and Bose, 1987): In this procedure two fig-
ures are superimposed in such a manner
that the sum of the squared distances be-
tween corresponding landmarks is mini-
mized. Hence the corresponding loss func-
tion is given by

o x) =x% foralli

2. Weighted Ordinary Procrustes Analysis
(Goodall, 1991): In this procedure one mini-
mizes the weighted sum of squared distances
between the corresponding landmarks. The
corresponding loss function is given by

bfx) = Wa? where W, are preselected
weights

There are infinitely many different func-
tions that can be chosen as loss functions. As
a result, by selectively choosing a loss func-
tion one can support almost any hypothesis
about how two forms differ. This is demon-
strated by considering two triangles X and Y
with the following landmark coordinates:

00 00
X=130 Y=130
03 05

Comparing these two triangles using super-
imposition schemes with different loss func-
tions yields quite different results.

Edge matching method: In this method
one fixes a particular edge, say (1,2) in object
X (Fig. 1a) and then translates, rotates, and
scales Y such that the edge (1,2) in Y matches
with the same edge in X exactly. Because
there are three different edges (1,2), (2,3),
and (1,3), three different conclusions about
where and how the two shapes differ can be
drawn (Fig. 1a—c). Although the particulars
vary, all changes appear to occur at only one
landmark when using this method.

Ordinary Procrustes Analysis: Figure 1d
shows the direction and magnitude of the
shape difference as depicted by this method.
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It concludes that changes have occurred lo-
cal to all three landmarks.

If one performs multiple weighted ordi-
nary procrustes analyses with different
weights, different shape changes can be pro-
duced.

Robust theta-rho fit (Siegel and Benson,
1982): Figure le shows the results of the
robust fit algorithm. This method concludes
that changes have occurred at two of the
three landmarks.

Even when the same two objects are being
compared, vastly different conclusions about
how they differ in shape seem possible. Sci-
entifically, these varying conclusions are un-
settling.

In mathematical terms the problem with
superimposition methods can be stated as
follows. Following Goodall (1991), suppose
Y=bX+J)B + 1,t' where b >0 is a sca-
lar, B is an orthogonal matrix, and ¢ is a
vector. Here ¢ corresponds to translation, b
corresponds to size difference, B corresponds
to rotation, and, finally, J corresponds to the
“shape difference.” But (b,¢,B,JJ) are noniden-
tifiable! That is, there are many combina-
tions of these four variables that can lead us
from X to Y, asillustrated in Figure 1. Which
combination should we take as the true
one? To make the problem identifiable,
superimposition methods use the follow-
ing constraint: Choose (b,,B,J) such that

K

> &[d(ixiy)] is minimized for arbitrarily
i=1
chosen functions ¢,(+). It is obvious that the
choice of ¢,(-) affects inferences about <J, the
shape difference. In my opinion, there is no
convincing argument for choosing any par-
ticular loss function over others.

Abiologist is not interested in merely test-
ing the null hypothesis of similarity of forms
or shapes, but also in localizing form/shape
differences. For example, in the study of
human dysmorphology when planning for
corrective plastic surgeries, it is critical for
the surgeon to know where and by how much
the forms are different. In evolutionary stud-
ies it is important to know where morpholog-
ical changes have occurred because the
nature of such changes may impact on sys-
tematic, functional, or paleontological hy-
potheses. Because the choice of the loss func-
tion &¢(-) affects o/, the shape difference
matrix, localization of the differences in form
is Froblematic when using superimposition
to find the shape differences.
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Fig. 1. Shape difference as shown by the dotted
vectors between the same two triangles using different
loss functions: (a—c) The conclusions drawn by method of
edfe matching. Changes are attributed to one landmark
only, the landmark however depends on the matched
edge which is chosen arbitrarily. (d) The conclusion

e

drawn by the ordinary procrustes analysis, This says
that all three landmarks have changed. (e) The conclu-
sion drawn by the robust theta-rho fit. It says that only
two landmarks have changed. This example thus illus-
trates the arbitrariness of the conclusions drawn by
superimposition methods.
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It should be noted that various methods
for comparing shapes where only outline
data are available can be looked upon as
superimposition methods. All the above crit-
icisms apply to them as well.

Is the situation hopeless? I do not think so.
There are at least two methods for compar-
ing biological shapes that do not involve
superimposition.

AVOIDING SUPERIMPOSITION

Finite element scaling analysis (FESA)
proposed by Lew and Lewis (1977) compares
two forms without superimposition. A de-
tailed discussion of this method is available
in Cheverud and Richtsmeier (1986). Al-
though the method does not rely on superim-
position, in my opinion, the following fea-
tures of this method are troublesome:

1. Choice and effect of the homology func-
tion: The homology function determines the
plotting of the pseudohomologous points in
the interior of the element. The choice of this
function can alter the form difference,

2. Choice of the element shape and design:
The type of elements used and how the object
is discretised depend on the experimenter.
Unfortunately both these choices affect the
form difference (Richtsmeier et al., 1989).

3. When a landmark is shared by different
elements, there seems to be no unique way to
calmllilate the form difference at such land-
marks.

Thus results of the form comparisons us-
ing superimposition methods are affected by
the choice of the loss function whereas re-
sults from FESA are affected by the choice of
the homology function and the element de-
sign. On the positive side, FESA can be used
to represent the form difference graphically
using Thompsonian-type grids. However,
one should remember that these graphics
very much depend on the homology function,
which may not represent the physical prop-
erties of the interior.

Some of these concerns regarding super-
imposition methods and FESA have been
raised previously in the literature. For a
recent review see Lestrel (1989).

INVARIANCE PRINCIPLE, MAXIMAL
INVARIANTS, AND COMPARISON OF FORMS

In this section, I discuss a principle which
can be used to evaluate different methods of
form comparison. Mathematically oriented
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readers may refer to Cox and Hinkely (1974)

for more details on the invariance principle

and maximal invariants. Here Ip discuss

fhesle ideas at a mathematically less rigorous
evel.

As defined earlier, the form of an object is
that characteristic which remains invariant
under translation, rotation, and reflection of
the object. This definition suggests the fol-
lowing principle.

Invariance principle

All the scientific inferences concerning the
forms of objects should remain invariant
under translation, rotation, and reflection of
the objects.

To iflustrate the invariance principle, con-
sider a two-dimensional object with four
landmarks. This object is represented by a
(4 X 2) matrix of real numbers consisting of
(X, Y) coordinates of four landmarks. 1\§0w
suppose we translate and rotate this object
and measure the coordinates of the same
four landmarks. The (4 X 2) matrix now ob-
tained is different than the original (4 x 2)
matrix. The following two matrices, al-
though different, correspond to the same
object:

0 0 1.5 2.0
|11 0 |15 3
X=11 1l X=lo5 3
0 1 0.5 2
In fact,
X*=XB+1t
where
0 -1
B=
+1 0
15 0
t:
0 2.0
and
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Y = N

In general, any translation, rotation and
reflection of X can be expressed as

X*=XB+1t

where Bisa (2 X 2) orthogonal matrix corre-
sponding to rotation and reflection, t is a
2 x 2 diagonal matrix of real numbers corre-
sponding to translation, and 1 is a matrix of
1s. Similar operations can be defined for a
three-dimensional object.

Note that if one is interested only in the
form of the object, given that form of an
object is invariant under translation, rota-
tion, and reflection, the representations X
and X* are equivalent.

Let us fix X and consider the collection of
all matrices X*s that can be obtained by
choosin§ different values of B and t. All of
these X*s are equivalent to X. In fact every
matrix in this collection is equivalent to
every other matrix. Note also that X belongs
to this collection whent = 0 and B =1, We
refer to such a collection of all matrices
which are equivalent to each other (because
they are translations, rotations, and/or re-
flections of each other) as an “orbit.”

Consider the space of all (K x 2) matrices.
This space corresponds to landmark coordi-
nate matrices of two dimensional objects
with K landmarks. An object can be consid-
ered to be a “point” in this space. All the
“points” that lie on the same orbit are equiv-
alent, and conversely if two “points” are
equivalent then they lie on the same orbit
(see Fig. 2). One can think of these orbits as
the equithermals on a weather map or the
contours on a topographical map.

Now let X andp Y%re two different objects in
the sense that they are not equivalent to
each other, i.e., they lie on two different
orbits in the landmark coordinate space.
How should we quantify the “form differ-
ence” between X and Y?

Suppose we simply take a coordinatewise
difference between % and Y viz. X ~ Y and
define it as the form difference between X
and Y. Clearly this “form difference” is not
invariant under rotation or translation of X.
That is, let X* = XB + 1t, then X — Yis not
equal toX* ~ Y. But the invariance principle
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demands that the definition of form differ-
ence be such that it is invariant under trans-
lation, rotation, and reflection of X or Y or
both. Hence this naive definition of form
difference does not seem satisfactory.

To quantify the form difference between X
and Y properly, we need to introduce the
concept of maximal invariant. Let M(-) be a
function defined on the landmark coordinate
space such that it assigns the same value to
all the points which are on the same orbit but
assigns different values for points that are
on different orbits. Thus, if X and Y are
equivalent then M(X) = M(Y),andif Xand Y
are not equivalent then M(X) = M(Y). Sucha
function M(-) is called a maximal invariant.
It is also important that this function M(-) be
such that given its value one can construct
the configuration of K points representing
the original object, thus retaining all the
information about the form of an object as
represented by K landmarks.

uppose such a function M(:) exists. Then
the domain of this function is the landmark
coordinate space and the range of this func-
tion is called a maximal invariant space.
Note that an orbit in the landmark coordi-
nate space maps to a single point in the
maximal invariant space (see Fig. 2).

Suppose now we define form difference
between X and Y in terms of M(X) and M(Y),
then this form difference (whatever its defi-
nition is!) is invariant to the rotation, reflec-
tion, and translation of X or Y or both. This
follows because M(X) and M(Y) are invariant
to these operations, the form difference de-
fined in their terms thus satisfies the invari-
ance principle. This suggests that form dif-
ference should be define§ and studied in the
maximal invariant space.

EUCLIDEAN DISTANCE MATRIX ANALYSIS

Since the form of an object is invariant
under translation, rotation, and reflection, it
follows from the previous section that an
approach for comparing forms should start
with a representation which is invariant
under these operations. Such a representa-
tion for landmark data is given by the Eu-
clidean distance matrix (KDM). In the fol-
lowing, this representation is described in
detail and a method is introduced that uses
the EDM to compare forms.

Euclidean distance matrix representation

Suppose that the object under study is two
dimensional and has K landmarks. Consider
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Fi%. 2. A pictorial representation of the action of a Maximal Invariant. Maximal invariant
M( - ) maps all the points on an orbit to a single point in the maximal invariant space.

the following matrix of all possible distances
between pairs of landmarks.

T 0 d(12) d(13) -+ d(1K) |
d21) 0 - d(2,K)

i1(1(,1) e 0

—

This is a K x K symmetric matrix whose
(i)™ element corresponds to the elucidean
distance between landmarks : and j on the
object. Since this is a matrix of distances, it is
clear that it is invariant under translation,
rotation, and reflection of the object. The
following theorem shows that this represen-
tation retains all the information pertaining
to the form of an object that is available from
landmark data. We call the Euclidean Dis-
tance Matrix a Form Matrix.

Theorem 1: Let X be a landmark coordi-
nate matrix corresponding to a gb;iven object
with K landmarks in R(2). Let F(X) be the
form matrix corresponding to the same ob-
ject. Then %'ven F &'), one can always con-
struct a configuration of K points in R(2), say
X', such that X is some translation and
rotation/reflection of X',

Proof: Follows from Theorem 14.1 of Mar-
dia et al. (1979).

This result holds also for three-dimen-
sional objects. In fact, using this result one

can characterize the form space of all objects
in D-dimensional Euclidean space R(D) with
K landmarks as follows:

Theorem 2: The form space of all objects
in R(D) with K landmarks is equivalent to
the space of all K x K symmetric positive
semidefinite matrices of rank D.

Proof: This again follows from Theorem
14.1 of Mardia et al. (1979).

The above theorem gives a characteriza-
tion of the form space [or what Kendall
(1989) calls a presize and shape space], pro-
vided reflection is allowed. Note that this
theorem also gives a very nice decomposition
of the form space of all figures with K verti-
ces. All K vertex figures on the plane corre-
spond to all K X K symmetric positive
semidefinite matrices of rank 2. All K vertex
figures in three dimensions correspond to all
K X K symmetric positive semidefinite ma-
trices of rank 3. Moreover, since a matrix can
never be of rank 2 and also of rank 3 these
spaces are disjoint. Thus R[K(K — 1)/2]
space is decomposed into K disjoint sub-
sets—one corresponding to all figures in the
plane, one corresponding to alFIl"igures in
three dimensions, etc. Of course there is one
subspace which corresponds to no figures at
all. This theorem also suggests that when
one wants to choose a statistical model for
this set of linear distances, one has to make
sure that the sample space has the appropri-
ate rank, either two or three, in order for the
samples to correspond to two or three dimen-
sional objects. See Lele and Richtsmeier
(1990) for further discussion.
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 Theorem 3: The form matrix is a maximal
invariant under translation, rotation, and
reflection.

Proof: Let X and Y be two landmark coor-
dinate matrices corresponding to two ob-
jects.

a. It is straightforward to check that
FX)=FXB+1t)

for all orthogonal matrices B and (2 x 2)
diagonal matrices t. This follows because
distances between landmarks are invariant
under these changes. Thus if X and X* are
eqtlivalent, FX) = FIX*).

. To demonstrate maximal invariance, it
is necessary to show that if F(X) = F(Y) then
Y = XB + 1t for some B and t. This follows
from Theorem 1.

Based on this maximal invariant, the Eu-
clidean distance matrix, it can be see that the
form of an object with K landmarks can be
represented as a point in the L [= K(K — 1)/
2]-dimensional Euclidean space. In fact it
has to belong to (a subset of) the positive

uadrant with the axes excluded. Let us call
this a “form space.”

In order to compare two forms, one natu-
rally needs to define a distance function on
the form space. By the very nature of the

roblem, there are several different choices.

cientific considerations dictate this choice.
I suggest the following criteria for such a
choice.

Let D(. , ) denote the distance function.

1. Given F(X) and the metric D(X, Y), one
should be able to construct F(Y) uniquely,
i.e., given figure X and the form difference
between X and Y, one should be able to
construct figure Y uniquely.

b. The metric D(., .) should be devoid of
any subjective choices of quantities such as
loss functions. As shown earlier these
choices can be scientifically dangerous.

¢. The metric D(., .) should be interpret-
able biologically.

Let F(A) and F(B) be two form matrices
corresponding to two objects A and B in R(D)
with K landmarks. The form difference ma-
trix D(B,A) is defined as follows:

DX, Y) = [F{(X)F;Y)]
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where 0/0 = 0. Note that only the upper
diagonal part of this matrix is necessary to
study the form difference. This is of size
KK~ 1)2.

It is easy to check that the form difference
matrix D(X, Y) = [F(X)/F;(Y)] satisfies the
above intuitively reasonable requirements.
The form difference matrix can also be used
for the interpretation and explanation of the
underlying biological processes. Each entry
in the form difference matrix tells us about
the percentage change in the distances be-
tween the landmarks involved. How to inter-
pret these changes in terms of the biological
processes depends on the problem at hand
and the biologists’ input becomes important
[see Richtsmeier and Lele (1990) for an ap-
plication].

Given this distance function one can now
define equality of forms and equality of
shapes in the following manner:

Definition 1: Two objects A and B are said to
have the same form if all the off-diagonal
entries of D(B,A) are equal to 1.

Definition 2: Two objects A and B are said to

have the same shape if all the off-diagonal

entries of D(B,A) are equal to ¢, for some

¢ > 0. Or equivalent if max Dy/minD,; = 1.
J2t >t -

Definition 3: If two forms are such that
D(B,A) does not satisfy either of the condi-
tions then they have different forms. The
ratios smaller than 1 denote shrinking in B
as compared to A, and the ratios larger than
1 denote stretching in B as compared to A.
The form matrix or the form difference
matrix is fairly large. A natural question is:
Can a subset of these landmarks be adequate
for comparison of forms? Unfortunately, con-
sideration of only a proper subset of these
distances can lead one to erroneous conclu-
sions, as shown in the following example. For
the sake of simplicity, suppose we are com-
aring two objects with three landmarks.
uppose we consider only two distances, say
d(1,2) and d(2,3). Based on this subset con-
sisting of two distances only, all the objects
in Figure 3 would be considered to have the
same form!

Mosimann (1970, 1975a,b) has suggested
use of linear distances for studying shapes.
However, he neither prescribes (necessarily)
the distances between landmarks nor how
many distances are needed in order to pre-
serve all the information on the form of the
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Fig.3. Inadequacy of the proper subset of all possible
distances to represent the form of an object completely:
All the triangles in the above figure have the same sides
d(1,2) and d(2,3), however they do not have the same
form. If one considers only a subset of all possible dis-

object as is available in the landmark data.
Thus, he ends up with a subset of all possible
distances, which could be inadequate as
shown above. Strauss and Bookstein (1982)
also can be criticized on the same ground.

One cannot claim, however, that all
K(K — 1)/2 distances are necessary to con-
struct the relative locations of K landmarks.
For example, it is easy to show that for a
two-dimensional object with K landmarks,
properly chosen 3(K — 2) distances are suffi-
cient to construct the relative locations of the
landmarks. However, a particular subset
may not be sensitive to a given form change.
Since one does not know a priori what the
form change is, one cannot select a “good”
subset of these K(K — 1)/2 distances. Hence I
suggest the use of all the distances.

Shape comparisons

Following the same logic, it is clear that
the shape of an object corresponds to the
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W

\
\
\

e
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tances namely d(1,2) and d(2,3), one will declare these
triangles to have the same form. The conclusion is that
one has to consider all K(X — 1)/2 distances to completely
specify the form of an object with K landmarks.

maximal invariant under scaling operation
on the form space.
Let x = (x, x4, . - ., ) be a point in the

L

form space. Let |lx!l = (3 x?)” denote the
i=1

norm of this vector and E(x) = (cos ! x;/llx!1,

i=1.2,...,L)bethe euler angles.

Theorem 4: E(x) is a maximal invariant
under the group of scaling.

Proof: (i) It is easy to check that
E(x) = E(cx) for all scalar
>

¢c>0.
(ii) Ex) = E(y) implies that
= ¢x for some scalar ¢ > 0.

The second assertion follows because if two

oints have the same euler angles then they

ie on the same ray although t%ley may have

different positions. Thus E(x) characterizes
the shape of an object.
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A better w:? to represent shape of a con-
figuration of K points would be through all
ﬁos&b]e angles between triplets of points.
owever, it 1s not known how many angles
are needed to specify a shape completely and
what conditions on the values of these angles
would ascertain the existence of a figure in a
given Euclidean space. Moreover, in general,
angles are more difficult to interpret than
ire distances. I will not pursue this approach
ere.

Arbitrariness of the size measures

The above geometry also helps us under-
stand the inherent arbitrariness in the defi-
nition of the size measure. One could define
shape umambiguously by the euler angles,
because of a natural and universally agreed
u%on mathematical group structure under
which shape is invariant, namely that of
rotation, reflection, translocation, and scal-
ing. However, there is no such natural
and universally agreed upon mathematical
group structure under which size is invari-
ant. This leads us to defining a “problem-
based natural” group under which size is
invariant and hence the existence of a pleth-
ora of size measures. For the sake of demon-
stration, I will consider an unrealistic two-
dimensional space and show how the
maximal invariants for different size mea-
sures look (Fig. 3a~d). The reader can use
his/her imagination to draw corresponding
pictures in three and higher dimensions.

Note that in Figure 4b—d, all forms that lie
on a particular curve have equal size but
different shapes, just as all the forms lyin
on a given ray through the origin have equa
shape but ditferent sizes (Fig. 4a). The arhi-
trariness of the size measure makes the
decomposition of form difference into shape
difference and size difference arbitrary. Tlpxe
question is: should we formulate our re-
search questions in terms of form rather
than size and shape?

In summary, note the following features of
EDM analysis for the comparison of forms:
(1) The method does not require superimpo-
sition and thus there is no need to choose a
loss function arbitrarily, (2) the method does
not infer anything about how the interior of
the object might have defomed. The only real
information one has is the relative positions
of landmarks, or equivalently the distances
between them. It is better if one uses this and
only this information to analyze the form
difterence. Postulating about the relative po-
sitions of the interior points which are unob-
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served is unsound and unnecessary, and (3)
the form difference is defined in terms of a
maximal invariant and hence it satisfies the
Invariance Principle.

However there are two shortcomings of the
Euclidean Distance Matrix approach:

1. The form matrix and the form difference
matrix are very large, making interpretation
difficult. However one can arrange this ma-
trix in an increasing or decreasing order. The
landmarks corresponding to the two ex-
tremes, small and large ratios, are important
biologically. See Richtsmeier and Lele (1990)
for an illustration of such analysis.

2. The form difference cannot be repre-
sented graghically. However, this seems to
be due to the nature of the problem. All the
methods that can represent the form differ-
ence pictorially seem to resort to some kind
of subjective choice such as the nature of the
transformation or the loss function.

CONCLUSIONS

The conclusions of this discussion are as
follows:

1. The method of superimposition for com-
paring shapes is subjective. Almost any the-
ory can be supported by choosing convenient
loss functions. This is demonstrated through
examples. I feel that this subjectivity is sci-
entifically dangerous. Similar criticisms ap-
ply to finite element scaling analysis and the
use of homology functions.

2. Consideration of the invariance princi-
ple leads one to the Euclidean distance ma-
trix representation of the object. The same
consideration leads to certain definitions of
form difference and shape difference. These
are biologically interpretable.

3. While the form difference matrix is
large, the necessity of considering the com-
plete matrix and not a subset of it is demon-
strated. Methods to extract biologically rele-
vant information from this matrix merit
development.

4. Statistical testing based on these invari-
ant quantities merits further study.

Lastly, I would like to mention that no
approach is devoid of shortcomings and
counterexamples. They do not necessaril
make the approach obsolete or nonsensical.
However, a researcher should be aware of
the merits and demerits of these approaches
when drawing conclusions of scientific im-
portance.
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Fig. 4. Maximal invariants under different mathe-

matical groups. (a) The maximal invariants under the
group of scaling. All the forms on a given curve have the
same shape but different sizes. (b) The maximal invari-
ant when size of the form (x,y) is defined to be y. (¢) The
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