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ABSTRACT Weighted distributions can be used to fit various forms of resource selection probability functions (RSPF) under the use-

versus-available study design (Lele and Keim 2006). Although valid, the numerical maximization procedure used by Lele and Keim (2006) is

unstable because of the inherent roughness of the Monte Carlo likelihood function. We used a combination of the methods of partial likelihood

and data cloning to obtain maximum likelihood estimators of the RSPF in a numerically stable fashion. We demonstrated the methodology

using simulated data sets generated under the log–log RSPF model and a reanalysis of telemetry data presented in Lele and Keim (2006) using

the logistic RSPF model. The new method for estimation of RSPF can be used to understand differential selection of resources by animals, an

essential component of studies in conservation biology, wildlife management, and applied ecology. (JOURNAL OF WILDLIFE

MANAGEMENT 73(1):122–127; 2009)
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‘‘When resources are used disproportionately to their
availability, use is said to be selective’’ (Manly et al.
2002:15). Understanding differential selection of resources
by animals is an essential component of conservation
biology, wildlife management, and applied ecology (Boyce
and McDonald 1999). Researchers often want to estimate a
resource selection probability function (RSPF) and the
associated resource selection function (RSF) in pursuit of
this understanding (e.g., Boyce and MacDonald 1999,
Manly et al. 2002). The most commonly used study design
in these studies is the use-versus-available study design,
wherein the researcher knows only a random subset of the
locations that were visited by the individuals under study
and the potentially available set of locations (Manly et al.
2002). The collection of available sites consists of not only
the sites that are unused but also sites that might potentially
have been used. This problem is sometimes termed as zero
contamination (Johnson et al., 2006). Keating and Cherry
(2004) noted the problem of assuming no sample contam-
ination and its effect on the estimation of the RSF and
RSPF under the use-versus-available study design. Johnson
et al. (2006) addressed this problem and showed that if one
assumes the exponential form of the RSPF, then standard
statistical software to fit logistic regression can be manip-
ulated to obtain estimates of the nonintercept parameters of
the exponential RSPF, or equivalently, the exponential RSF.

The exponential RSPF is only one of many possible
models to model RSPF. For example, Manly et al. (2002)
list logistic, log–log, and probit models among the possible
alternatives. However, no practical method was suggested to
fit these alternative models to data obtained under the use-
versus-available study design. Generalizing the weighted
distribution approach described in Johnson et al. (2006),
Lele and Keim (2006) showed that these alternative RSPF
models can be fit by numerically maximizing the Monte
Carlo estimate of the likelihood function. Although valid

computationally, the Monte Carlo maximum-likelihood
approach is difficult to implement in practice because the
Monte Carlo sampling variation leads to a rough-likelihood
surface. Locating the global maximum in the presence of
many local maxima is difficult (Press et al. 1986).
Furthermore, standard maximization procedures, such as
the Newton–Raphson or Nelder–Mead, require specifica-
tion of a starting value that is close to the true maximum
(Press et al. 1986). A starting value that is far from the true
maximum leads to difficulties in even starting the opti-
mization procedure (Press et al 1986). Our goal was to
provide a simple, numerically stable method of obtaining
maximum-likelihood estimators of the parameters in the
general RSPF.

MATHEMATICAL METHOD

We let X¼ (X1, X2, . . . , Xp) denote the vector of environ-
mental covariates representing resources that may be used by
animals. Under the use-versus-available study design, the
researcher only knows a sample of the locations that were
visited by the individuals under study. These data may be
obtained using Global Positioning System collars, radio-
telemetry, or other survey methods. We assume that a
particular location may potentially be visited repeatedly. The
implicit assumption in resource-selection studies is that
habitat characteristics of locations that are visited more
often are preferred over habitat characteristics of locations
that are visited less often. To study the relationship between
habitat characteristics X and probability of selection (or,
equivalently, visit), we can use a function p(X, b), such that
0 � p(X, b) � 1 for all possible values of X and b. This
probability function is called the RSPF (Manly et al. 2002).

We assume a sample of N used locations from the study
area. We denote the data by X U

i i ¼ 1, 2, . . . , N where
X U

i are the set of habitat characteristics associated with used
(strictly speaking, visited) locations. The goal of the analysis
is to estimate the RSPF, p(X, b), or equivalently, to1 E-mail:slele@ualberta.ca
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estimate the parameters b. To do this, we make an
additional assumption, that the habitat characteristics, or
equivalently, environmental covariates, Xi, are a random
sample from some multivariate distribution f A(X ). This is
simply the distribution of covariates at locations that the
species can potentially visit. For detailed discussion on the
meaning and definition of the available distribution, see
Manly et al. (2002). Provided this assumption is reasonable,
standard probability argument leads to the result that the
used data X U

i , i ¼ 1, 2, . . . , N arise from the distribution:

f U ðX ; bÞ ¼ pðX ; bÞf AðX Þ
PðbÞ : ð1Þ

where P(b)¼
R
p(X, b) f A (X )dX. Notice that 0 , P(b) � 1

(Johnson et al. 2006, Lele and Keim 2006). In non-
mathematical terms, the distribution f U (X, b) corresponds
to the proportions of various resources represented in the
used sample and f A (X) corresponds to the proportions of
various resources represented in the available sample. The
commonly used selection index, the ratio of the used and
available proportions, is applicable if the resource types are
categorical variables (Savage 1931). The RSPF, p(X, b), is
simply an extension of the idea of selection index to the case
of continuous covariates.

Given the data X U
i , i ¼ 1, 2, . . . , N, the likelihood

function can be written as

Lðb;X U Þ ¼
YN

i¼1

pðX U
i ; bÞf AðX U

i Þ
PðbÞ :

Given a sample from the used distribution, it is not always
possible to estimate the parameters b by maximizing the
likelihood function. The technical conditions under which
it is possible to estimate the parameters b are provided in
Lele and Keim (2006). For practitioners, it may be
sufficient to know that resource selection models, such as
the logistic, log–log, or probit, can be estimated as long as
there is �1 numeric (noncategorical) covariate in the
model.

We now describe the method to obtain the maximum
likelihood estimator (MLE). First, we obtain a random
sample with replacement of size M from the available
distribution by randomly selecting with replacement M
locations from the study area and recording their environ-
mental covariate values. We denote this sample from the
available distribution by X A

i , j ¼ 1, 2, . . . , M. We denote
the partial likelihood by PL and w ¼ N/(M þ N), the
proportion of used sites (N) in the combined sample of used
and available sites (N þM ). Consider the function

PLðb; aÞ ¼
YN

i¼1

wpðX U
i ; bÞ

wpðX U
i ; bÞ þ ð1� wÞa

� �

3
YM

j¼1

ð1�wÞa
wpðX A

j ; bÞ þ ð1�wÞa

 !

: ð2Þ

Maximizing PL(b, a) with respect to (a, b), under the
constraint a 2 (0, 1), leads to estimators that are equivalent
to the maximum-likelihood estimators (Gilbert et al. 1999).

See Appendix for derivation of the partial likelihood
function. The partial-likelihood function can be maximized
using any numerical optimization routine, such as the
Newton–Raphson or the Nelder–Mead algorithm. How-
ever, we use a different optimization procedure based on
data cloning (Lele et al. 2006). One major advantage of the
data-cloning algorithm is that it is less sensitive to the
specification of a starting value and is more likely to lead to
the global maximum than other numerical optimization
methods. Furthermore, data cloning facilitates computation
of standard errors of the estimates automatically. In our
experience, data-cloning–based optimization is computa-
tionally slower but numerically more stable than other
optimization algorithms. A combination of the 2 methods is
also possible where we obtain an initial estimate using data
cloning on a subset of the data set. We then use this initial
estimate as the starting value for the Nelder–Mead
optimization of the Monte Carlo likelihood function. We
also note that if we set the number of clones to 1, the data-
cloning algorithm provides Bayesian estimates based on flat
priors.

The data-cloning algorithm computes the maximum
partial-likelihood estimator (MPLE) and its standard error.
In practice, we also need the value of the log-likelihood
evaluated at the estimated parameters to compute various
information criteria such as the Akaike Information
Criterion (AIC) or Bayesian Information Criterion (Burn-
ham and Anderson 1998). We can easily compute the log-
likelihood value at the MPLE b̂ using the formula:

logLðb̂;X U Þ ¼
XN

i¼1
logpðX U

i ; b̂Þ

� N log
1

M

XM

j¼1
pðX A

j ; b̂Þ
" #

: ð3Þ

COMPUTER PROGRAM

A computer program written in R programming language
(R Development Core Team 2005) to fit various RSPF
models is available from the author. The program can fit the
exponential RSPF p(X, b) ¼ exp(XT b), the logistic RSPF
p(X, b) ¼ exp(XT b)/1 þ exp(XT b), the log–log RSPF
p(X, b)¼ exp[�exp(XT b)], and the probit RSPF p(X, b)¼
U(X T b) where U(.) denotes the cumulative distribution
function for a standard, normal distribution and X T b¼ b0

þ b1X1 þ . . . þ bp Xp. The parameter b0 represents the
intercept, and the other parameters represent coefficients
associated with environmental covariates. The program
output consists of estimates of these parameters, their
standard errors, and the value of the log-likelihood function
at the estimated parameters.

The program runs under the Windows operating system.
The user needs to install R software (R Development Core
Team 2005) and WinBUGS (Spiegelhalter et al. 2004). In
addition, the user needs to install R2WinBUGS, BRugs,
and MASS packages within the R software.

Data input consists of 2 American Standard Code for
Information Interchange (ASCII) text files corresponding to

Lele � Computer Program for RSPF Estimation 123



the used points and the random sample of available points.

Each row corresponds to the covariates of one location. The

first entry in each row should be 1. No row names or column

names are allowed. If categorical covariates are used, proper

dummy variables should be used in the data input file.

Columns should be separated by a space. These files should
not be in the data-frame format.

In general, it is advisable to standardize the continuous

covariate values by subtracting the mean and dividing by the

standard deviation so that they range from approximately�3

to 3. Large positive or negative values of continuous

covariates can destabilize the optimization routine. If the

number of random samples from the available distribution is

small, RSPF estimation can be unstable. As the number of
covariates (i.e., no. of columns in the data matrices)

increases, the number of samples from the available

distribution should also increase to have a fair representation

of the available distribution. Furthermore, the weighted

distribution method works only if �1 of the covariates is

continuous. If all covariates are categorical, only relative

probabilities can be estimated (Lele and Keim 2006).

RESULTS

We tested the validity of the method and the computer

program using simulations. We generated 100 data sets
under the use-versus-available study design and the log–log

RSPF model with 2 covariates, namely p(X, b) ¼
exp[�exp(b0 þ b1X1 þ b2X2)]. The first covariate was
binary, taking values zero and one (e.g., habitat types), and
the second covariate was continuous. For each data set, we
computed the MLE and the MPLE using the well-
established Nelder–Mead optimization algorithm. For the
same data set, we computed the MPLE using the data-
cloning optimization algorithm. We used 10 clones and 5
chains, and the number of iterations was 5,000 with a burn-
in period of 4,000. For a detailed explanation of the terms
clones, burn-in period, number of iterations, number of
chains, etc., see Lele et al. (2007) and Spiegelhalter et al.
(2004). If the MPLE and MLE estimates are numerically
close, these results support the claim that MPLE and MLE
are equivalent. Furthermore, if the MPLE estimates using
the Nelder–Mead algorithm and the data-cloning optimi-
zation algorithm are numerically close for every data set,
then it indicates that data cloning is a valid method to
optimize the partial-likelihood function. We found that
both these claims were valid (Table 1). It is clear that
MPLE is approximately unbiased, with mean and variance
similar to the MLE.

We then reanalyzed the data set presented in Lele and
Keim (2006) using the logistic RSPF model, namely p(X, b)
¼ exp(X T b)/[1 þ exp(X T b)] and the partial-likelihood–
based method of estimation. A detailed description of the
data set and biological conclusions are available in Lele and
Keim (2006). The full data set consisted of 6,338 used
points and a random sample of 15,000 points from the
available distribution. We used the data-cloning algorithm
on the full data set. We also used a 2-step approach
described in the previous section. For the 2-step approach,
we first considered a random sample of 1,000 used points
and a random sample of 1,000 available points to obtain the
initial estimates using the data-cloning algorithm. We then
used these initial estimates as starting values in maximizing
the Monte Carlo likelihood function using the Nelder–
Mead algorithm and the full data set (Lele and Keim 2006).
To check the effect of the subset size, we repeated the 2-step
approach with a random sample of 2,000 used points and a
random sample of 2,000 available points to obtain the initial

Table 1. Simulation results showing equivalence of maximum partial-
likelihood estimator (MPLE) and maximum likelihood estimator (MLE).a

True
parameterb

MPLE MLE

Data cloning Nelder–Mead Nelder–Mead

x̄ SE x̄ SE x̄ SE

b0 ¼ �1 �1.003 0.4622 �0.99567 0.4619 �0.9559 0.4914
b1 ¼ 0.5 0.4924 0.2194 0.4902 0.2187 0.48298 0.2160
b2 ¼ 0.8 0.8186 0.2060 0.8160 0.2065 0.7987 0.2157

a MPLE and MLE based on 1,000 used and available points each; x̄ and
SE based on 100 simulations.

b Log–log resource-selection probability function model p(X, b) ¼
exp[�exp(X T b)].

Table 2. Reanalysis of telemetry data on mountain goat (Oreamnos americanus de Blaineville 1816) resource use, showing the equivalence of the 2-step and
the full-data maximum partial-likelihood estimator (MPLE).

Parametera
MPLE

full-data DCb

2-Step estimationc

Subset size n ¼ 1,000; M ¼ 1,000 Subset size n ¼ 2,000; M ¼ 2000

Initial estimate Final MPLE Final MLE Initial estimate Final MPLE Final MLE

b0 Estimate �5.3275 �5.8423 �5.3263 �4.9999 �5.2318 �5.3257 �5.0006
SE 0.1498 0.3703 0.1380 0.086 0.2946 0.1380 0.086

b1 Estimate 2.2428 2.5932 2.2482 2.1188 2.3442 2.2426 2.1191
SE 0.0895 0.3305 0.0939 0.064 0.2289 0.0938 0.064

b2 Estimate �0.0178 �0.0164 �0.01779 �0.01866 �0.0169 �0.0178 �0.01865
SE 0.0005 0.0013 0.00049 0.00041 0.0010 0.00049 0.00041

a Estimated value and its SE.
b MPLE based on full data set and data-cloning (DC) maximization procedure.
c A subset of the data was used to get an initial estimator using the data-cloning (DC) maximization procedure. This initial estimator is used as a starting

value for the Nelder–Mead optimization to obtain the MPLE and max. likelihood estimator (MLE) based on the full data set.
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estimates using the data-cloning algorithm. As expected, the
Nelder–Mead maximization–based MPLEs were nearly
identical to MPLEs based on the full data set and data
cloning (Table 2). Different subsets of the original data,
along with a 2-step estimation procedure, led to exactly the
same MPLEs and MLEs. This indicated that, for large data
sets, the 2-step estimation procedure was a reasonable
approach. We also point out that the MPLEs are slightly
different than the MLEs.

In addition to fitting the logistic RSPF, we also fit log–
log, probit, and exponential RSPF to these data. According
to the AIC values, the logistic RSPF provided the best fit
(AIC ¼�18,307.66) followed by the probit RSPF (AIC ¼
�18,230.16), the exponential RSPF (�18,133.18), and the
log–log RSPF (AIC¼�18,102.41). This analysis indicated
that it is useful to consider RSPF models more general than
the commonly used exponential RSF.

DISCUSSION

Under use-versus-available study design, it is possible to
estimate probability of selection if one uses logistic, log–log,
or probit RSPF models (Lele and Keim 2006). On the other
hand, using the exponential RSF model leads only to
relative probability of selection. Thus these general models
of RSPF lead to stronger inferences than were feasible
before. Aside from providing estimates of probability of
selection, these models also expand the class of models that
wildlife managers can use to study resource selection by
animals. As shown in the data analysis section, these models
sometimes describe the data better than the exponential
RSF model. One of the main obstacles in using the general
RSPF models, such as the logistic, log–log, and probit, was
the lack of availability of a computer program to fit these
models. We provided a numerically stable computational
algorithm to accomplish this task. The researchers and
managers no longer need to be restricted to using the
exponential RSF model and can use other, general models of
RSPF to study resource selection by animals.

MANAGEMENT IMPLICATIONS

Understanding which resources are important to species
under study is essential for making good management
decisions. One of the important goals of resource selection
studies is to estimate the probability that a particular
environmental attribute or a combination of attributes will
be selected by the species. If certain environmental attributes
have high probability of selection, they are deemed
important when managing the ecosystem. Up until now,
researchers could infer the change in the probability of
selection but not the probability of selection itself. From
management perspective, this information is not very useful.
For example, inferring that the construction of the road
reduces the probability of selection by a factor of 5 is not
sufficient; reducing the probability of selection from 0.9 to
0.18 is not the same as reducing the probability of selection

from 0.005 to 0.001, although in both cases the probability
is changing by the same factor of 5. In the first situation,
building a road has severe impact on the wildlife whereas in
the second case, the impact is negligible, although the
relative change is exactly the same. Thus, for effective
management, it is important to know the probability of
selection and not simply the relative probability of selection.
We have now provided a methodology to obtain the
probability of selection itself.
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APPENDIX: DERIVATION OF THE PARTIAL LIKELIHOOD FUNCTION

Let X U
i , i¼ 1, 2, . . . , N denote the data set corresponding to the used points and X A

i , j¼ 1, 2, . . . , M denote the data set
corresponding to a random sample from the available distribution. Let w ¼ N/(M þ N). The likelihood function can be
written as

YN

i¼1
f U ðX U

i Þ
YM

j¼1
f AðX A

j Þ ¼
YN

i¼1

pðX U
i ; bÞf AðX U

i Þ
PðbÞ

YM

j¼1
f AðX A

j Þ

¼
YN

i¼1

pðX U
i ; bÞf AðX U

i Þ
PðbÞ

w
pðX U

i ; bÞf AðX U
i Þ

PðbÞ þ ð1� wÞf AðX U
i Þ

3
YM

j¼1

f AðX A
j Þ

w
pðX A

j ; bÞf AðX A
j Þ

PðbÞ þ ð1�wÞf AðX A
j Þ

3
YN

i¼1
w

pðX U
i ; bÞf AðX U

i Þ
PðbÞ þ ð1� wÞf AðX U

i Þ

2

4

3

53
YM

j¼1
w

pðX A
j ; bÞf AðX A

j Þ
PðbÞ þ ð1� wÞf AðX A

j Þ

2

4

3

5 ð1Þ

The first term in the above product can be written as

YN

i¼1

pðX U
i ; bÞ f AðX U

i Þ
PðbÞ

w
pðX U

i ; bÞ f AðX U
i Þ

PðbÞ þ ð1� wÞf AðX U
i Þ
¼
YN

i¼1

pðX U
i ; bÞ

PðbÞ

w
pðX U

i ; bÞ
PðbÞ þ ð1� wÞ

¼ 1

wN

YN

i¼1

wpðX U
i ; bÞ

wpðX U
i ; bÞ þ ð1� wÞPðbÞ

ð2Þ

Similar algebraic manipulations lead to representing the second term as

YM

j¼1

f AðX A
j Þ

w
pðX A

j ; bÞf AðX A
i Þ

PðbÞ þ ð1� wÞf AðX A
j Þ
¼
YM

j¼1

1

w
pðX A

j ; bÞ
PðbÞ þ ð1� wÞ

¼ 1

ð1� wÞM
YM

j¼1

ð1�wÞPðbÞ
wpðX A

j ; bÞ þ ð1� wÞPðbÞ ð3Þ

The full-likelihood function can be expressed as a product of the following 2 terms:

PLðbÞ ¼
YN

i¼1

wpðX U
i ; bÞ

wpðX U
i ; bÞ þ ð1� wÞPðbÞ

YM

j¼1

ð1� wÞPðbÞ
wpðX A

i ; bÞ þ ð1� wÞPðbÞ
ð4Þ

and

Remainder term ¼ 1

wN

1

ð1� wÞM
YN

i¼1
w

pðX U
i ; bÞf AðX U

i Þ
PðbÞ þ ð1� wÞf AðX U

i Þ

2

4

3

5

3
YM

j¼1
w

pðX A
j ; bÞf A þ ðX A

j Þ
PðbÞ þ ð1� wÞf AðX A

j Þ

2

4

3

5 ð5Þ

Let us rewrite the first term, namely,

PLðb; aÞ ¼
YN

i¼1

wpðX U
i ; bÞ

wpðX U
i ; bÞ þ ð1� wÞPðbÞ

� �YM

j¼1

ð1� wÞa
wpðX A

i ; bÞ þ ð1� wÞPðbÞ

� �

: ð6Þ
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by suppressing the dependence of P(b) on b and treating it as a free parameter a 2 (0, 1) as follows:

PLðb; aÞ ¼
YN

i¼1

wpðX U
i ; bÞ

wpðX U
i ; bÞ þ ð1� wÞa

� �YN

k¼1

ð1� wÞa
wpðX A

i ; bÞ þ ð1� wÞa

� �

: ð7Þ

The results in Gilbert et al. (1999) show that maximizing this function with respect to the parameters (b, a), under the
constraint 0 , a � 1, leads to the same estimators asymptotically as those that would have been obtained by maximizing the
full-likelihood function.

Associate Editor: McCorquodale.
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