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Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial
dependence in spatially referenced ecological data. A common feature of geostatistics is predicting
values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial
dependence in sampled data is necessary before kriging and is usually accomplished with the
variogram and its traditional estimator. Other types of estimators, known as non-ergodic estimators,
have been used in ecological applications. Non-ergodic estimators were originally suggested as a
method of choice when sampled data are preferentially located and exhibit a skewed frequency
distribution. Preferentially located samples can occur, for example, when areas with high values are
sampled more intensely than other areas. In earlier studies the visual appearance of variograms from
traditional and non-ergodic estimators were compared. Here we evaluate the estimators’ relative
performance in prediction. We also show algebraically that a non-ergodic version of the variogram is
equivalent to the traditional variogram estimator. Simulations, designed to investigate the effects of
data skewness and preferential sampling on variogram estimation and kriging, showed the traditional
variogram estimator outperforms the non-ergodic estimators under these conditions. We also
analyzed data on carabid beetle abundance, which exhibited large-scale spatial variability (trend)
and a skewed frequency distribution. Detrending data followed by robust estimation of the residual
variogram is demonstrated to be a successful alternative to the non-ergodic approach.

Keywords: covariogram, correlogram, kriging, simulation, median-polish, robust variogram
estimator
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1. Introduction

A property exhibited by many data sets in ecology is that observations taken close together
in space are more similar than observations taken further away. This is an example of
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spatial dependence, generally defined to exist when data observed or measured depend to
some degree on their relative spatial locations. Geostatistics is a set of statistical
techniques used to analyze spatially dependent data. The use of geostatistics in ecology
was introduced by Robertson (1987) and subsequently has gained in popularity (Legendre
and Fortin, 1989; Rossi et al., 1992; Hohn et al., 1993; Liebhold et al., 1995; Schlesinger
etal., 1996; Raty et al., 1997; Robertson et al., 1997; Koenig, 1999). Spatial dependence in
geostatistics is commonly modeled with the variogram. In practice a variogram model,
chosen from a pool of valid models (e.g., Journel and Huijbregts, 1978), is fit to a set of
variogram estimates. This fitted model is then used, along with values from observed
locations, in kriging, which provides predicted values at locations where values have not
been sampled. Accuracy and precision of kriged predictions can depend on these fitted
variogram models which in turn may be influenced greatly by the method used to first
estimate the variogram.

The traditional variogram estimator (e.g., Cressie, 1991) has received most of the
attention in practice. Isaaks and Srivastava (1988) and Srivastava and Parker (1989)
propose other estimators of spatial dependence, called non-ergodic estimators. These
estimators are claimed to perform well in situations where the observed data exhibit
characteristics such as heteroscedasticity, skewness, or were preferentially sampled.
Preferential samples can occur, for example, when areas with high values are sampled
more intensely than other areas throughout the study domain. Rossi et al. (1992) used
ecological data sets to visually compare the traditional variogram estimator to these non-
ergodic estimators. They suggested that the non-ergodic approach may often be superior to
the traditional variogram estimator for reproducing the true underlying spatial structure.
This appears to have encouraged the use of non-ergodic estimators in several ecological
applications (e.g., Rossi and Posa, 1990; Sharov et al., 1997; Knudsen et al., 1994). Non-
ergodic estimators are also calculated by some popular computer packages offering
geostatistical computations, for example, GSLIB (Deutsch and Journel, 1992), Variowin
(Pannatier, 1996), and Splus Spatial Stats (Kaluzny et al., 1996). This report investigates
the traditional and non-ergodic estimation approaches to spatial dependence by extending
the previous work based on visual comparisons to include performance in spatial
prediction (kriging).

We first define the traditional and non-ergodic estimators and discuss their differences
by explaining the calculations involved in computing each estimator. We show
algebraically that in the omnidirectional case, a non-ergodic form of the variogram
estimator is equivalent to the traditional estimator. We then propose a simulation study to
compare the estimators’ predictive performance, considering effects caused by data
skewness and preferential sampling. The results and interpretations further clarify
previous work with the non-ergodic estimators. The effect of large-scale spatial variability
(trend) on variogram estimation is demonstrated using data collected on carabid beetles.
Detrending the data and robust estimation of the residual variogram is demonstrated to be
a successful alternative to the non-ergodic approach.
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2. Methods
2.1 Variogram estimators

Variograms are used frequently in geostatistics to model spatial dependence, although
covariograms and correlograms can also be used. In either case, the underlying model of
spatial dependence in practice is rarely known. A common approach is to estimate the
spatial dependence and then fit a parametric model to the estimated spatial pattern. Let

{z(s1), -5 2(s0)}

represent a set of spatial data where s;, i = 1, ..., n denotes the observed spatial locations
and z(-) the observed value at that location. The variogram, covariogram, and
correlogram functions, denoted by 2y(+), C(+), and p(-) respectively, model spatial
dependence between locations s; and s; as a function of the lag vector, h = s; — s;. Spatial
dependence is also assumed either isotropic, depending just on distance, denoted by the
Euclidean metric || k||, or anisotropic, depending on distance and direction.

The traditional estimator of the variogram is:

(k) = ﬁ%&m (s (1)

The set N(h) contain the pairs of locations (s;, s;) that are a distance || k|| apart and [N (k)]
is the number of such pairs. Distances are usually grouped into distance classes by defining
tolerance regions around |4 ||. The semivariogram, y(k), is defined to be one half the
variogram and can be estimated by just dividing (1) by a factor of 2. In the interest of
brevity, many references in the field of ecology refer to y( - ) as the variogram instead of
using the term semivariogram. The traditional estimator of the covariogram is:

~ 1 ~ ~
C(h) = WNZ(’%(Z(S,-) —2)(z(s) — 2), (2)

where

n

z=(1/n) ) =(s)

i=1

represents the mean of the sampled data. A traditional estimator of the correlogram can be
obtained by

plh) ==, (3)

where Ci (0) represents an estimate of variance for the spatial process.
Under the assumption of second-order stationarity of the underlying spatial stochastic
process, the variogram and covariogram models are related linearly through

29(h) = 2C(0) — 2C(h). (4)

The variogram and the estimator in (1), are used most often in practice. Reasons for
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preferring the variogram and its traditional estimator are based on issues of stationarity and
unbiasedness (Cressie 1991, page 70-73).

In practice, variogram estimates can be calculated in different directions by first
restricting the set of location-to-location pairs to only those that are within a given angle
tolerance of the chosen directions. Visual inspection of such directional estimates are
commonly used to determine isotropic or anisotropic behavior. For isotropic spatial
dependence, an omnidirectional variogram is computed without regard to direction by
combining all possible directions into one estimate.

Proponents of the deterministic (design-based) approach to geostatistics (e.g., Isaaks
and Srivastava, 1988; Srivastava and Parker, 1989) question the preferred use of variogram
estimation to covariogram estimation, which relies on model-based assumptions that may
be of little practical importance. In their efforts to better characterize spatial dependence
for a given data set in hand (as opposed to the traditional estimator which treats data as just
one possible realization of the underlying model), they propose the following non-ergodic
covariogram estimator,

1

Cor ) = T DoEls5) = Z() ) — 20)
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=
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where the statistics Z(h;) and Z(h;) represent the mean of all observations appearing
respectively as z(s;) and z(s;) in each set N(h). This notation is referred to in Isaaks and
Srivastava (1988) as the mean of the ‘‘head’’” and mean of the ‘‘tail’’ values, deriving its
meaning from the head and tail of the vector separating two locations (Deutsch and
Journel, 1992). The non-ergodic correlogram estimator is given as,

G,

I’le (h)
(h;)o(hy)’

where G(h;) and G (h;) represent similarly head and tail standard deviations. The term non-
ergodic refers to a deterministic statistical model of only a single bounded realization (the
data observed) without regard to expected values (moments) taken over all possible
realizations (ergodicity).

There is a clear distinction between head and tail locations for one dimensional
processes such as time series or spatial transects (e.g., Cox, 1983). When directional
estimates are considered in the more general spatial setting (dimensions > 1), head and
tail designations for a given pair of locations are defined by selecting, for example, the
more north location as the head and the more south location as the tail for estimation in the
north-south direction. Similar definitions apply when calculating estimates in the east-west
direction, and so forth.

Defining head and tail values is meaningless for omnidirectional estimates. The
common practice is to count each location twice, once as the head and once as the tail. This
is equivalent to having the set N(k) contain the location pairs (s;, s;) as well as (s;, ;) for
all locations s;, s; that are separated by a distance ||h|| (or are within the given tolerance
region of ||A|| ). The resulting mean head values and mean tail values are thus equal, which
simply corresponds to the mean of all the observations whose locations are separated by

Pre(h) = (6)
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the given lag distance, referred to as the lag mean Z(h). A similar argument can be used to
combine head and tail standard deviations into one lag variance 6 (h) estimate. Therefore,
omnidirectional non-ergodic covariogram and correlogram estimators can be written as

~ 1 o
Cne(h) = |N(h)|1;h>2(s')2(8j) -z (h)’ (7)
and

puelh) = S

Incidentally, the counting of each location twice does not effect any calculations in the
traditional estimators (1) and (2).

2.2 Traditional versus non-ergodic approach

The difference between the traditional covariogram estimator (2) and the non-ergodic
covariogram estimator (5) is the subtraction of a global mean versus the subtraction of
““local’” means. The term local is used in these non-ergodic estimators, not in the usual
geographical sense, but to denote only those values contributing to that lag estimate,
whether decomposed into head and tail attributes for directional estimates or one lag
characteristic in the omnidirectional case. The non-ergodic correlogram estimator (6)
incorporates a local variance in contrast to the constant (global) variance scaling factor
used in the traditional correlogram estimator (3). It has been suggested that these
alternative covariogram and correlogram estimators would provide for a more accurate
characterization of spatial dependence by better accounting for peculiarities in spatial data
through the changing local means and local variances (Isaaks and Srivastava, 1988;
Srivastava and Parker, 1989; Rossi et al., 1992).

When omnidirectional estimates of spatial dependence are considered, the locations of
data for any given distance class (denoted by h) are spread over the entire spatial region
under study. Clearly the data and number of location pairs contributing to each distance
class differs across the lags. The local estimates of means and variances used in the non-
ergodic estimators can be viewed as estimators of a global mean and variance based on
smaller and different samples than that used in the traditional approach and thus likely to
be poorer estimates of these parameters. Although this use of different data for each lag
may be exactly what has been considered an advantage of the non-ergodic approach, it
would appear to have a negative effect with stationary isotropic data, which by definition is
characterized by a constant global mean and variance. The use of subsetted data would
also appear to have a negative impact on estimation at the crucial shorter lags, where the
number of available data pairs is often sparse.

In practice non-ergodic covariogram estimates are usually transformed, using relation
(4), into variogram-like form by

2C(0) — 2C,(h), (8)

where C (0), an estimate of the total process variance, is required. Srivastava and Parker
(1989) and Rossi et al. (1992) appear to use the sample variance o> of the data
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z(sy),---,2(s,) in (8) when graphically comparing the traditional and non-ergodic
estimators. Barnes (1991), however, shows that taking C(0) = > can either over- or
underestimate C(0) depending on the sampling configuration and possible trend
contamination. One may wonder why the non-ergodic local variance estimate
G(h;)a(h;) is not used as C(0) in (8) above, since the non-ergodic approach is based on
these local statistics. It turns out, however (see appendix), that for the omnidirectional case
such a procedure would just lead back to the traditional variogram estimator given in (1),
that is

25(h) = 26%(h) — 2C,,(h).
The variogram-like non-ergodic correlogram estimator is given by

2(1 = pye(h)), ©)

which can be justified by combining (3) and (4). Semivariogram-like non-ergodic
estimators can be obtained by dividing (8) and (9) by a factor of 2.

In practice, semivariogram models y(k) are usually fit to the estimated semivariogram,
whether a traditional or non-ergodic approach has been adopted. Once a semivariogram
p(+) (or variogram) model has been specified it can be used in kriging. The kriging
algorithm is designed to yield predictors that are linear, unbiased, and minimize mean-
squared prediction error (e.g., Cressie, 1991, chapter 3). Let s, represent a location where
no data have been collected. The kriged value for z(s,) is given by

o) = > (s,

i=1

where weights, 4;, i = 1,..., n, are obtained by solving the following system of equations

Z/ij(s,-—sj)—y(so—s,-)—&—m:O7 i:l,...,nZiizl. (10)

i=1 i=1

The parameter m is a Lagrange multiplier used for constraining the predictor z( * ) to be
unbiased. The minimized mean-squared prediction error, often called the kriging variance,
can also be calculated from (10).

As a result of (4), the above kriging equations can be equivalently written in terms of a
covariogram or correlogram. Estimators of spatial dependence, both traditional and non-
ergodic, however, are not related as simply as their model counterparts shown in (4). Thus
differences in the kriging algorithm can result from choosing among the various estimators
of spatial dependence.

2.3 Simulation study

We considered normal and lognormal spatial data, representing both symmetric and
skewed frequency distributions, over a fixed two dimensional domain. The isotropic
exponential semivariogram model,
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0 h=0
vh) = {co+ce{1 —exp(~3[|hll/a,)} k0 (11)

was used as the true underlying model of spatial dependence with the sill parameter ¢, and
nugget parameter ¢ fixed at 25 and 5 respectively. The variogram range parameter a, was
set at 24, 48, and 96 representing relatively weak, medium, and strong levels of spatial
dependence. Observations with these specifications were simulated using the LU
decomposition of the covariance matrix (Davis, 1987) at locations on a 25 x 25 regular
grid with 4 unit interval spacings, yielding an exhaustive set of 625 spatially dependent
normal data for each variogram model specification. Lognormal data were simulated by
exponentiating normal data generated with a sill of 1, a nugget of 0.2, and the same
designated dependence levels.

The spatial data, once simulated, was considered fixed and then sampled using a regular
grid and preferential type sampling designs. Regular grids are common sampling
configurations used in ecology for collecting spatial data (Southwood, 1978; Greenwood,
1996). The use of such designs in practice does not knowingly produce spatially clustered
and/or preferentially sampled observations. The regular grid samples in our simulations
were obtained by extracting data from each exhaustive set using an 8 unit interval 13 x 13
regular grid. The preferential samples were obtained in a two stage process. An initial
sample was first extracted from each exhaustive set using a 12 unit interval 9 x 9 regular
grid. A second sample was then extracted (from the same exhaustive data set) in a
neighborhood around only those 9 x9 grid locations corresponding to the largest 12
values. The neighborhood was defined to be the closest eight neighbors on the original 4
unit interval grid around each selected location. Both samples were then combined.
Because of the spatial dependence, such a procedure produced preferentially clustered
samples of larger values and is similar to the adaptive sampling designs of Thompson
(1990), which have been used in ecology (e.g., Thompson et al., 1992; Smith et al., 1995).
Fig. 1 displays the regular grid configuration and an example preferential sampling
configuration used in the simulations.

Let

Sl = {slv"'asnl}7

represent the set of sampled spatial locations. For the regular grid designs nl = 169 and
the preferential sampling designs produced about the same sizes depending on how many
locations in the initial sample were on the boundary of the domain (all eight neighbors
could not be sampled for locations falling on the boundary). After specifying the set of
sample locations S, (either with the regular grid or preferential sampling procedure) an
additional set of two hundred different locations were randomly selected from the
remaining locations in each exhaustive set. These locations, denoted by the set

Sy ={Su1>-->Su1 1200}

represent locations for which kriged predictions will be sought. The simulated values at
these locations, however, play no role in estimating and modeling the spatial dependence.
They are taken to represent ‘‘true’’ values used for evaluating predictive performance. The
locations in S, do not remain fixed, rather were randomly selected each time data was
simulated at S.
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Figure 1. The regular grid and an example of a preferential sampling configuration used in the
simulation study.
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Let Z, = {z(sy),...,z(s,)} and Z, = {z(8,,1 1), - - -, 2(8,») } represent simulated data
at the sampled S; and unsampled S, locations respectively. Isotropic exponential
semivariogram models were fit using the weighted least squares (WLS) procedure of
Cressie (1985) to omnidirectional semivariogram estimates based on Z; using the
traditional estimator (1) and the non-ergodic estimators (8) and (9). For lognormal data a
semivariogram model was also fit to estimates based on the log, transformed data using the
traditional semivariogram estimator.

Performance of the traditional and non-ergodic variogram estimation procedures were
evaluated based on the accuracy of resulting kriged predictions. Root mean squared
prediction error (RMSPE) were calculated for each model fitted:

1 n2

1/2
RMSPE:{_2 > (z*(s,.)_z(s,.))2} : (12)

n i=nl+1

where z*(+) is the ordinary kriged prediction, using one of the models, and z(s;) the
““true’’ value. Predictions based on lognormal data were transformed back unbiasedly
(e.g., Cressie, 1991, page 135) to the original scale. Efficiency ratios were generated by
dividing the RMSPE based on the non-ergodic approach to those obtained using the
traditional approach. Since smaller values of RMSPE are desired, ratios greater than 1.00
indicate favor towards the traditional semivariogram estimator. Ratios close to or less than
1.00 can be interpreted accordingly. For lognormal data, the efficiencies were calculated
relative to the traditional approach based on the log, transformed data.
The following algorithm summarizes the simulations.

Step 1 Select a data type (normal or lognormal), sampling design (regular grid or
preferential), and spatial dependence level (weak, medium, or strong).

Step2 Simulate an exhaustive data set with the above specifications. Sample this data
set as specified yielding the sets S, S,, Z;, and Z,.

Step 3 Fit isotropic exponential semivariogram models to the semivariogram estimates
obtained from the traditional estimator (1) and the non-ergodic estimators (8)
and (9). Generate kriged predictions at the locations in S, using these fitted
models.

Step 4 For each approach calculate the RMSPE statistic. Generate efficiency ratios by
dividing these values for the non-ergodic approach by the corresponding value
from the traditional approach.

Step 5 Repeat steps 2 through 4 500 times for each data type, sampling design, and
variogram dependence level combination specified in Step 1.

All data simulation, semivariogram estimation, and kriging were performed using Splus
(MathSoft Inc., 1995) and Splus Spatial Stats (Kaluzny et al., 1996). Semivariogram
models were fit using SAS procedure NLIN (SAS Institute, 1990). Note, the
omnidirectional non-ergodic covariogram and correlogram estimators were calculated
by setting the angle tolerances (fol.azimuth argument) to a value greater than 90 in the
Splus Spatial Stats covariogram and correlogram functions, which adjusts for an apparent
bug in this release (Silvia C. Vega, personal communication).
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Figure 2. Data posting (left) of Hengeveld’s (1979) carabid beetle, Pterostichus coerulescens,
counts. Each unit interval spacing in both the directions represent 40m. Locations (right)
representing the sampled 225 observations o and the 25 observations e set aside to evaluate
prediction. Locations of the two outliers excluded from the analyzes are labeled with an X.

2.4 Analyses of Hengeveld’s beetle data

Hengeveld (1979, Table 2) provides pitfall trap count data on the carabid beetle,
Pterostichus coerulescens. We compare predictive performance of methods used to
characterize spatial dependence in these beetle counts. We choose this data because it was
one of the examples considered in Rossi et al. (1992) where traditional and non-ergodic
estimates of spatial variability were examined visually. We extend this examination to
include spatial prediction. Analyses presented below are for demonstration purposes only.
The methods employed do not represent the only possible approaches nor do they
represent necessarily a best approach.

The spatial data posted in Fig. 2 (left) consists of 252 observations (beetle trap counts)
referenced by their corresponding locations, labeled here arbitrarily as representing an east
and north coordinate. Two observations (counts of 1262 and 1414) in the southwest corner
were beyond 3 (and almost 4) standard deviations of the mean and considered as possible
outliers. So as not to have these anomalous values possibly effect our variogram
comparisons they were excluded from subsequent analyzes. In a manner similar to the
simulation study (with data sets S; and S,), 25 observations were drawn randomly and set
aside, Fig. 2 (right). Geostatistics was performed on the remaining 225 observations and
used to generate kriged predictions at locations corresponding to the 25 observations set
aside. Root mean squared error in prediction RMSPE statistics, as defined in (12), were
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Figure 3. Frequency histograms for (a) the 225 sampled beetle counts and (b) the corresponding
median-polish residuals.

used to evaluate prediction performance resulting from the use of different estimators of
spatial dependence.

Because the 225 samples were drawn randomly from the 12 x 21 regular grid, there is no
bias due to preferential sampling. There are two features of this data, however, that are
interesting in regard to non-ergodic estimators of spatial dependence. First, the observations
exhibit a skewed frequency distribution (Fig. 3a). Second, a linear interpolated surface
shown in Fig. 4a appears to indicate a trend (i.e., a nonconstant mean) in the northeast to
southwest direction. These two characteristics are known to adversely effect the traditional
variogram estimator (e.g., Starks and Fang, 1982; Rossi ef al., 1992).

Our analyses of this data included kriged predictions based on semivariogram models fit
to non-ergodic covariogram and correlogram estimates. Comparisons were made to an
approach based first on detrending the data using median-polish (Cressie, 1991, Section
3.5) and estimating spatial dependence of the residuals. As a precaution, the robust
semivariogram estimator of Cressie and Hawkins (1980),

4

5(h) = m% 1Z(s;) — Z(s;)| /(0.457 +0.494/|N(h)|), (13)

was used for the residuals, where the sets N (k) are subject to the same distance grouping as
for the other spatial dependence estimators defined previously. The estimator in (13) down-
weights the influence of possible outliers. We did not consider this estimator in the
simulation study because the problem of outliers did not arise. This robust semivariogram
estimator is another alternative approach to dealing with certain peculiarities in spatial data.

3. Results

Each simulation experiment consisted of 500 analyses arising from combinations of data
distribution type (normal and lognormal), sampling design (regular grid or preferential),
and spatial dependence level (weak, medium, and strong). Of primary interest is the
performance of the non-ergodic estimators compared to the traditional estimator, as
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(a) Sampled Beetle Counts

(b) Estimated Median-Polish Surface

800

Figure 4. Orthographic perspective displays for (a) the sampled beetle counts and (b) the estimated
median-polish trend surface.

measured by the RMSPE efficiency ratios. Tables 1 and 2 show, for each experiment, the
percentage of these ratios that were greater than one, that is, percentage of times out of the
500 iterations that the analysis based on the traditional variogram estimator outperformed
the analysis based on the non-ergodic estimators. Since this may be regarded as averaging
over repeated realizations, an issue advocates of the non-ergodic approach may criticize,
we have included Figs 5 and 6 which show distributional summaries of these ratios from
which intepretations are made without regard to averaging or other summary measures
over the simulations.

3.1 Normal data with regular grid sampling

Combining regular grid sampling with data generated from a spatially isotropic normal
distribution represents the most ‘‘well behaved’’ scenario we considered; no advantage of
the non-ergodic over the traditional estimator is expected. Table 1 indicates little
difference in performance between the traditional and non-ergodic estimators: most
percentages are around 50%. Some exceptions favoring the non-ergodic approach,
however, were observed. For example, when predicting at unsampled locations,
semivariogram models fit to estimates based on the non-ergodic correlogram estimator
outperformed the models based on the traditional semivariogram estimator notably more
often for the medium and strong levels of spatial dependence. However, as shown in Fig. 5
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Figure 5. Distributional summaries for the simulated RMSPE efficiency ratios. Regular grid and
preferential sampling were used with isotropic normal spatial data with weak (W), medium (M), and
strong (S) levels of spatial dependence.

(left), there was a tendency for the non-ergodic correlogram estimator to lead to
predictions that were about 20% less accurate than those based on the traditional
semivariogram estimator.

3.2 Normal data with preferential sampling

In this spatial design scenario we considered data generated from a spatially isotropic
normal distribution as above. However, samples were collected preferentially. Results
shown in Table 1 clearly favor the traditional approach. At least 80% of the time the
traditional semivariogram estimator produced more accurate predictions than either non-
ergodic estimators. For half of the experiments these percentages were above 90%. The
distributional summaries shown in Fig. 5 (right) provides information on the extent to
which the traditional semivariogram estimator outperformed the non-ergodic estimators
with respect to RMSPE.

3.3 Lognormal data with regular grid sampling

Data analyzed in this design were generated to be spatially isotropic and lognormal,
representing a skewed frequency distribution, and sampled from a regular grid. Recall that
for lognormal data we also considered analyses using the traditional semivariogram
estimator based on the log, transformed data as well as on the untransformed data. Results
in Table 2 are expressed relative to the transformed data analysis. More than 68% of the
time this traditional approach produced smaller RMSPE statistics than those obtained from
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Table 1. Simulation results based on normal data with regular grid and preferential
sampling. The values listed are the percentage of times the traditional variogram estimator
outperformed the non-ergodic covariogram (NE Cov) and the non-ergodic correlogram
(NE Corr) estimators.

RMSEP
Sampling Design Spatial Dependence NE Cov NE Corr
Weak 44.5% 44.9%
Regular Grid Medium 41.5% 37.3%
Strong 45.9% 38.7%
Weak 88.0% 80.8%
Preferential Medium 93.8% 86.0%
Strong 90.0% 81.0%

Table 2. Simulation results based on lognormal data with regular grid and preferential
sampling. The values listed are the percentage of times the traditional variogram estimator
based on the log, transformed data outperformed analyses based on the untransformed data
using the traditional variogram (Tr Var), the non-ergodic covariogram (NE Cov), and the
non-ergodic correlogram (NE Corr) estimators.

RMSEP
Sampling Design Spatial Dependence Tr Var NE Cov NE Corr
Weak 77.4% 75.4% 73.1%
Regular Grid Medium 79.4% 73.5% 72.9%
Strong 76.2% 68.9% 68.3%
Weak 98.2% 78.6% 78.8%
Preferential Medium 99.2% 81.4% 86.2%
Strong 98.6% 83.4% 85.8%

either non-ergodic estimators based on untransformed data. With respect to just the
traditional semivariogram estimator, transforming the data was more successful (at least
76% of the time) than not transforming. Distributional summaries for the RMSPE
efficiencies are provided in Fig. 6 (left).

3.4 Lognormal data with preferential sampling

In this design we considered preferentially sampled data with the skewed lognormal
distributed. This spatial design represents the most ‘‘misbehaved’’ scenario we considered
and is similar to the design used in Srivastava and Parker (1989). At least 78% of the time
more accurate predictions were obtained with the traditional semivariogram estimator on
the log, transformed data than either of the non-ergodic estimators on untransformed data
(Table 2). Preferential sampling also caused more of an effect with respect to the
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Figure 6. Distributional summaries for the simulated RMSPE efficiency ratios. Regular grid and
preferential sampling were used with isotropic lognormal spatial data with weak (W), medium (M),
and strong (S) levels of spatial dependence. Results for the traditional variogram (TR Var), non-
ergodic covariogram (NE Cov), and non-ergodic correlogram (Ne Corr) were based on the
untransformed lognormal data and taken relative to the traditional variogram on the log, transformed
data.

traditional semivariogram estimator on transformed and untransformed data than did the
corresponding regular grid sampling results.

The non-ergodic approach produced results closer to those obtained from the
transformed analyzes than did the traditional semivariogram estimator on the same
untransformed data, Fig. 6 (right). Lag means and lag variances used in the non-ergodic
estimators appear to have had a positive effect on this type of preferentially sampled
lognormal data. Examples of the traditional semivariogram estimator based on the
untransformed data were very erratic. Srivastava and Parker (1989) provide illustrations of
this for a similar scenario. Fitting semivariogram models to these erratic estimates (not
tabulated) and proceeding with kriging is highly questionable.

3.5 Analyses of Hengeveld’s beetle data

Directional semivariogram estimates using the traditional estimator given in (1) are shown
in Fig. 7a. Most of these estimates appear to increase without bound (linear in shape) at a
rate which is direction dependent (anisotropic). The semivariogram estimates in the 135°
direction, perpendicular to the apparent trend, however, indicate lack of spatial
dependence. Figs 7b and 7c display directional non-ergodic covariogram and correlogram
estimates using the estimators given in (8) and (9). Both non-ergodic estimators reveal an
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Figure 7. Directional semivariogram estimates based on the 225 sampled beetle counts using (a) the
traditional semivariogram estimator, (b) the non-ergodic covariogram estimator, and (c) the non-
ergodic correlogram estimator. The non-ergodic estimates are displayed in semivariogram-like form.
Angular directions were measured clockwise from the 0° north-south direction using angle
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Non-ergodic variogram estimators 105

almost linear shaped model with isotropic spatial dependence, apparently masking the
effect due to the trend. Power semivariogram models (e.g., Cressie, 1991, page 62), which
include the linear model as a special case, were fit to the non-ergodic estimated isotropic
patterns using the WLS procedure of Cressie (1985). Results are shown in Figs 8b and 8c.

More difficulty was encountered in modeling the behavior exhibited by the traditional
semivariogram estimator shown in Fig. 7a. One approach could have been an attempt to
model the anisotropic behavior. We adopted an alternative approach, which seemed
reasonable for this example, based first on detrending the data and investigating spatial
patterns of the residuals. We employed the median-polish kriging approach of Cressie
(1991, Section 3.5). Fig. 4b shows the results of the fitted median-polish trend surface. The
residuals, defined to be the actual beetle counts minus the median-polish estimate at that
location, were used for variography.

Figure 3b displays the frequency distribution of the median-polish residuals, which is no
longer skewed and appears approximately Gaussian shaped about a mean of zero. A linear
interpolated plot of the residuals, similar to the ones displayed in Fig. 4, revealed no
evidence of a trend. Based on directional semivariogram estimates, spatial dependence in
the residuals was assumed isotropic. Fig. 8a displays this estimated isotropic pattern with a
WLS fitted spherical semivariogram model. The distribution of the median-polish
residuals shown in Fig. 3b, although seemingly ‘‘well-behaved,”” does appear to contain
possible outliers, both positive and negative. Estimates in Fig. 8a were thus based on the
robust semivariogram estimator in (13). Although non-ergodic estimators could have also
been used on residuals, this was made uncecessary by the median polish.

Ordinary kriging was performed using the semivariogram models shown in Fig. 8.
Results (Table 3) show that RMSPE’s were lowest for the approach based on median
polish kriging. The relative gain over the non-ergodic approach was approximately 7%
with respect to the non-ergodic covariogram and approximately 6% with respect to the
non-ergodic correlogram.

Differences in prediction errors observed for the beetle data are not large and may not
adequately justify the more complicated approach of decomposing the beetle counts into
trend plus spatial dependence. Many applications in ecology focus on describing spatial
dependence (e.g., Rossie et al., 1992), rather than using the modeled spatial dependence as
an intermediate step towards prediction. In these situations the variography results, such as
those shown in Figs 7 and 8 for the beetle data, are of most interest. Practitioners may find
it easier, however, to interpret the semivariogram in Fig. 8a in conjunction with the
median-polish surface in Fig. 4b, than to understand the non-ergodic covariogram or
correlogram.

Table 3. Root mean squared error in prediction
results from the analyses of Hengeveld’s carabid
beetle data.

Modeling Approach RMSEP
Median-Polish Robust Variogram 59.27
Non-Ergodic Covariogram 63.94

Non-Ergodic Correlogram 62.76
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4. Discussion

Variogram estimation is a crucial step in the geostatistical process. Non-ergodic estimators
have been suggested as a preferred approach for analyzing data that depart from conditions
in which the traditional variogram estimator is expected to perform well, such as skewed
or preferentially sampled data. This conjecture appears to be based on earlier studies
which visually compared traditional and non-ergodic estimators.

Designed to study the estimator’s predictive performance, results from our simulations
showed that traditional variogram estimation led to an increase in prediction accuracy
more often than non-ergodic variogram estimation. Furthermore, the potential gains in
predictive performance with the traditional approach (Figs 5 and 6) tended to be
substantially greater than that potentially lost for non-ergodic approach. With respect to
lognormal data, these results were based on traditional variogram estimation and kriging
on the log, transformed scale, which just transforms the data to normality. Basing the non-
ergodic estimators on this transformed scale, besides eliminating the skewness property of
the data, actually corresponds to the normal based experiments where the traditional
approach was demonstrated to be superior, especially with preferential sampling.

All the simulations we considered were based on stationary isotropic data and the
results, based on comments made in Section 2.2, may arguably have been predicted. We
agree in regards to the Normal regular grid sampling scenario, however, it was unclear
how the non-ergodic approach would perform with the additional effects of preferential
sampling and heteroscedasticity, which is precisely the situation it has been proposed as
the preferred method.

Lack of theoretical foundation with the non-ergodic estimators and our simulation
results support variogram estimation via the traditional approach. Data in reality, however,
will only at best approximate distributions such as normality or lognormality. To help
characterize spatial dependence in these situations, practitioners can study the behavior of
variograms using different estimators, a point suggested in Rossi et al. (1992) with respect
to the traditional and non-ergodic estimators. Differences or similarities in such behavior
along with other exploratory data analysis techniques can provide valuable information for
estimating and modeling spatial dependence.

We conclude that the non-ergodic covariogram and correlogram possess no clear
advantage over the traditional variogram for studying spatial dependence or making
spatial predictions. In fact, as we have shown in the omnidirectional case, the non-ergodic
form of the variogram estimator is equivalent to the traditional variogram estimator when
the non-ergodic local estimates of mean and variance are used consistently throughout.
Rather than depend upon these non-ergodic statistics, the practitioner is better served by
applying appropriate transformations to skewed data, accounting for spatial trends, and
recognizing the presence of preferential sampling or being aware of the effects of
preferential sampling on measures of spatial dependence. Non-ergodic covariograms or
correlograms cannot replace thorough data analysis before variography and prediction.
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Appendix

Below we show algebraically that
:;(h) = 82(’!) - éne(h)a

where (h) is the traditional semivariogram estimator obtained from (1) and C,,, (k) is the
omnidirectional non-ergodic covariogram estimator defined in (7). Let the set N(h)
contain the pairs of locations (s;,s;) as well as (s;,s;) that are a distance ||h|| apart. An
estimate of lag variance can then be given by
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where Z(h) is an estimate of lag mean,
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