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Ecological systems with threshold behaviour show drastic shifts in population abundance or
species diversity in response to small variation in critical parameters. Examples of threshold
behaviour arise in resource competition theory, epidemiological theory and environmentally
driven population dynamics, to name a few. Although expected from theory, thresholds may
be difficult to detect in real datasets due to stochasticity, finite population size and
confounding effects that soften the observed shifts and introduce variability in the data. Here,
we propose a modelling framework for threshold responses to environmental drivers that
allows for a flexible treatment of the transition between regimes, including variation in the
sharpness of the transition and the variance of the response. The model assumes two
underlying stochastic processes whose mixture determines the system’s response. For
environmentally driven systems, the mixture is a function of an environmental covariate and
the response may exhibit strong nonlinearity. When applied to two datasets for water-borne
diseases, the model was able to capture the effect of rainfall on the mean number of cases as
well as the variance. A quantitative description of this kind of threshold behaviour is of
more general application to predict the response of ecosystems and human health to

climate change.
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1. INTRODUCTION

Ecology is pervaded by models with threshold
behaviour, that is, models showing drastic shifts in
population abundance or species diversity in response
to relatively small changes in the parameters that
control their dynamics. Resource competition theory,
for example, predicts that microbial community should
change drastically when resource ratio crosses a critical
point where growth limitation shifts from one resource
to another (Grover 1997). Epidemic theory predicts
that parasites should persist only if host population
density increases above a critical value (Anderson &
May 1992). Population dynamic models also describe
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drastic population responses to environmental factors.
Ellis & Post (2004), for example, show that the effect of
temperature and density on wolf population is dramati-
cally different below and above a critical density value.
Below this threshold, population density is positively
and linearly associated with temperature due to its
effect on prey availability. Above the threshold, the
effect of temperature becomes weak when compared
with density effects. Grenfell et al. (1998) and Stenseth
et al. (2004) describe a similar threshold behaviour for
soya sheep in islands. Jacobson et al. (2004) show that
the rate of population increase of ungulates changes
drastically as snow depth crosses a critical point.
The existence of such thresholds has significant
consequences for the impact of climate change on
ecological systems.

This journal is © 2007 The Royal Society
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Figure 1. Two examples of systems with threshold response to the environmental driver. (a) Number of weekly severe cases of
leptospirosis in a hospital in Salvador, Brazil, versus the amount of rain (mm) in the previous week (log-transformed), 1996-2001
(Flannery et al. 2001). (b) Number of monthly cholera deaths in Parganas, Bangladesh, versus the amount of rainfall in the same

month (log-transformed), 1893-1940 (Pascual et al. 2002).

Classical approaches for modelling systems with
threshold behaviour assume the existence of two
(or more) non-interacting regimes: ‘low-density’ and
‘high-density’ (Ellis & Post 2004) or ‘regular’ and
‘explosive’ (Engel et al. 2001). Depending on the
current regime, the system’s response to covariates is
governed by a different probability distribution or a
different dynamic equation. The value of the threshold
is often fixed and deterministic, and identified from
data by visual inspection of scatter plots (Jacobson
et al. 2004) or by investigating the threshold value that
optimizes the fit of piecewise functions (Grenfell et al.
1998; Engel et al. 2001). This approach, however, often
hides several difficulties that arise when either looking
for theoretically predicted threshold phenomena in real
datasets or representing observed thresholds using
mathematical models. First, in real data, the existence
of thresholds may be blurred by stochasticities and
inadequate data resolution (Lloyd-Smith et al. 2005)
which may soften the observed transition between
regimes, making the identification of critical points a
difficult task. Moreover, the variability in the system’s
response and not just its mean can vary drastically
across a threshold. Figure 1 shows two examples of this
pattern that will be considered in this paper. Similar
patterns arise in the abundance of blue-green algae as a
function of N : P ratios in lakes (Smith, 1983).

Here we propose a statistical modelling framework
that allows for a flexible treatment of the transition
between regimes, including different degrees of sharp-
ness in the transition as well as drastic changes in
system variability. The proposed model assumes two
underlying stochastic processes, each of which dom-
inates at one end of the environmental spectrum.
Between these two extremes, the observations are a
mixture of the two processes and the mixture pro-
portion is a function of the driver. Thus, the transition
between states can be more or less gradual and the
actual shape of the transition is determined from the
data as a function of the covariates. With this
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approach, we model situations where shifts between
regimes do not follow a simple on and off response.

We illustrate the model with an application to time-
series data for two water-borne diseases, leptospirosis
and cholera, and their seasonal response to rainfall. The
proposed threshold model captures not only the change
in mean disease levels, but also their variances, as a
function of rainfall, providing a functional form for the
stochastic transition between regimes.

2. TWO EXAMPLES OF ENVIRONMENTAL
THRESHOLDS

Figure 1 shows scatter plots of disease versus rainfall for
leptospirosis in Salvador, Brazil (Flannery et al. 2001)
and cholera in Parganas, Bangladesh (Pascual et al.
2002). Leptospirosis is a water-borne acute bacterial
disease that affects both humans and animals. Human
infection occurs by contact with rodent urine-contami-
nated environment, surface water, soil and objects
(WHO 2005). In many tropical urban centres, leptos-
pirosis is an endemic disease, presenting a baseline
incidence throughout the year and sporadic outbreaks
after heavy rains, possibly due to the increased contact
of people with contaminated flood water (Sarkar et al.
2002; Karande et al. 2003).

Historically, large cholera outbreaks in Bangladesh
have been associated with deficient monsoon rainfalls
(see Pascual et al. 2002, for a review of environmental
drivers). This pattern has been classically attributed to
the short supply of potable water during droughts.
Similarly, the typical seasonal pattern in this endemic
region involves two peaks per year with a drastic
reduction in cases during the monsoons. A number of
other hypotheses have been proposed linking rainfall to
seasonal cholera cases through environmental factors
that affect the concentration of the pathogen in aquatic
environments (brackish and freshwater). Larger
inocula of Vibrio cholerae in the environment would
result from warming up of the water and associated
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plankton blooms outside the rainy season (Lobitz et al.
2000). Increased rainfall would dilute the concentration
of the pathogen through an increase in volume of the
environmental reservoir, lower salinity (below 15 0/00;
Miller et al. 1982), lower pH (below 8.5; Huq et al. 1984)
and reduced numbers of lysogenic vibriophages in the
water (Faruque et al. 2005). Since a heavy bacterial
load must be consumed to initiate a life-threatening
case of cholera, the number of total deaths by cholera
goes down in response to this dilution effect. A negative
effect of rainfall has also been described for other
regions of the world where periodic floods occur, as in
the region of Madras, India (Pascual et al. 2002) and
the Brazilian Amazon (Codego 2001). However, the
relationship between rainfall and cholera is complex
with historical patterns of positive seasonal association
in dry regions such as the Punjab and the northern
districts of Madras where intermittent outbreaks occur
(Pascual et al. 2002), as well as in more endemic, less
dry regions at longer lags in southern Madras (Ruiz-
Moreno et al. 2007). Evidence for positive interannual
associations have also been recently described between
floods and cholera transmission following El Nifio
events in recent decades in a rural area south of
Dhaka (Koelle et al. 2005).

Despite the anecdotal evidence and the many known
mechanisms by which rainfall can drive the seasonal
outbreaks of water-borne diseases, a quantitative
analysis of the nonlinear response of incidence to this
environmental driver is still missing. Here, we illustrate
a positive response of leptospirosis, with increased
incidence after heavy rainfall in Salvador, Brazil, and a
negative response of cholera, with a decrease in cases
during the monsoon season in Bangladesh.

Both diseases show a different response at low and
high values of the environmental driver and a sharp
transition between these behaviours. At one extreme,
the number of cases are consistently low (relatively to
the average), while at the other extreme, a mixture of
high and low cases is found. With the threshold model,
the objective is to describe the effect of the environ-
mental driver not only on the expected number of cases
but also on the system’s variability.

2.1. Threshold models: description
and inference

To identify and describe the threshold behaviour
suggested by the above disease patterns, we introduce
a threshold model that incorporates two underlying
processes and considers that the observed response is a
mixture of these two processes. At extreme values of the
environmental driver, one of the processes predomi-
nates. Between these two extremes, the observations
are a mixture of the two processes and the mixture
proportion is a function of the values of the environ-
mental covariate.

McLachlan & Peel (2000) provide a good intro-
duction to the general theory of probabilistic
mixtures of distributions and likelihood-based infer-
ence. We use here the theory of estimating functions
(Godambe 1991), instead of applying the full prob-
abilistic modelling approach and likelihood-based
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Table 1. Parameter estimates for the threshold model.

parameter leptospirosis cholera
point point
estimate 95% CI  estimate 95% CI
Uy 1.77 [1.44,2.08] 2214 [2132,2348]
o 13.8 (12,17] 157 [156,159]
a —6.25 [—10,—5] 1.2 [0.62,1.86]
b 1.29 [0.8,2.1] —1.06 [—1.39,—0.81]

inference, and consider only the mean and the
variance functions of the process to estimate the
parameters of the model.

Let uy, po denote the mean responses and o3, o3
denote the variances of the two processes, respectively.
Let m(2) denote the mixture proportion that is a
function of the observed covariates Z. Then, the mean
and the variance of the observed mixed process are
given by

E(Y]z) = m(2)u + (1 —7(2))p, (2.1)
Var(Y]|z) = 7(2)at + (1—7(2))0
()1 —7(2)) (1 — wo)®. (2.2)

In the water-borne diseases we consider here, we
model the individual processes such that ¢f = u; and
05 = wy. This is similar to modelling the component
processes as having a Poisson distribution. One may
also consider other mean and variance functions.
Furthermore, note that if one takes wu;=guo, this
approach allows one to model observations where
the variance of the observed process is a mixture of
the variance of the component processes depending
on the covariates, but the mean is unaffected by these
values. We model the proportion in the mixture using
the logistic function, namely,

7(z) = exp(a + bz)/(1 + exp(a + bz)). (2.3)

This flexible function takes values in the (0,1) range and
allows for sharp or slow changes in the mixture
proportion. Of course, any other function that takes
values between 0 and 1 may also be used. In our
examples, the change in the mixture proportion as a
function of the covariate is fairly sharp and hence we
call these models ‘threshold models’.

Let us denote the set of parameters that we want to
estimate as . To estimate 6, we minimize the objective
function as follows (Lele & Taper 2002):

" (y;— E(Y|z0)) .
;W +log(Var(Y|z 0)),

(2.4)
with respect to the parameters. The theory of
estimating functions can be used to prove that the
estimators obtained by this procedure are consistent
and asymptotically normal. The standard errors and
confidence intervals (CI) for the parameters are
obtained by the parametric bootstrap approach
(Efron & Tibshirani 1993).



4 Stochastic environmental thresholds

C. T. Codego et al.

(@) 0.8 - o

=
o)
|

mixture proportion
=)
N
l

0.2 H

log (rainfall)

®) g7 4°
064 o
0.5 - °
0.4 + o
0.3 - 9
02 -

0.1

0 0

0 1 2 3 4 5 6 7
log (rainfall)

Figure 2. Estimated mixing proportion (m(z)) for (a) the leptospirosis and (b) cholera datasets.
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Figure 3. Observed and predicted means and standard deviations of (a) leptospirosis cases (i,ii) and (b) cholera deaths (i,ii) as a
function of rainfall (open circles, observed; solid line, threshold model; dashed line, standard Poisson regression model).

3. RESULTS

Table 1 shows the point estimates and their bootstrap
95% CI for the two datasets. All calculations were
performed using the R v. 1.5 statistical package (scripts
are available upon request).

For leptospirosis, we found an expected incidence
of 1.77 cases per week in the drought scenario, and
13.8 cases per week after extreme floods. The other
parameters, a and b, describe the effect of the
environmental driver on the mixture of the two
processes. Since rainfall is associated with increasing
reporting of leptospirosis cases, parameter b is
positive. Figure 2a shows the estimated mixture
function for leptospirosis. The abrupt change in the
mixture proportion when log (rainfall) exceeds 2
supports the hypothesis of a threshold response
to rainfall.
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For cholera, the expected number of deaths in the
drought scenario is 2214 (95% CIL: 2132, 2348) per
month. During extreme floods, deaths go down to an
average of 157 (95% CI: 156,159). The mixture function
shows a negative association between rainfall and
deaths (figure 2b), and the estimated response is less
steep than that for leptospirosis.

To evaluate goodness of fit, we compared empirically
measured and model-derived estimates of mean number
of cases per level of rainfall intensity, as well as its
standard deviation (figure 3). Empirical estimates were
obtained by calculating mean and standard deviations
for the observations within the rainfall intervals:
[0,1],[1,2], ..., [5,6]. For the threshold model, mean
and average were calculated using fitted values within
the same intervals. We further included, for the sake of
comparison, estimates from a standard Poisson



Stochastic environmental thresholds

C. T. Codego et al. 5

regression model in which expected cases are considered
as a function of rainfall. From the results, it is clear that
the threshold model captures the effect of rainfall
reasonably well on the expected number of cases and
the variance, for both diseases. By contrast, the simple
Poisson regression model captures well only the
expected value but not the variability.

4. DISCUSSION

The probabilistic model introduced here allows the
estimation of nonlinear functional responses of ecologi-
cal systems to environmental variables. Contrary to
previous approaches, this model is capable of capturing
sharp transitions between system states without
resorting to a priori definition of cut points. The
presence of thresholds is left to the user as it is not
imposed by the model. For example, in the leptospirosis
case, the steep mixing function suggests the presence of
a threshold response to rainfall; hypothetically, when
rainfall exceeds the structure of the city’s run-off
system, flooding occurs. In the absence of flooding,
leptospira contamination is restricted to a few sites; in
its presence, contamination spreads to large areas and
the number of exposed individuals increases drastically.
From the estimated mixing function, a threshold point
for hospital alerts could be determined and used in
combination with rainfall forecasts.

On the other hand, a less sharp mixing function is
estimated for cholera and may not be compatible with a
mechanistic threshold (on—off ) response. The relation-
ship between rainfall and cholera is known to be more
elusive, involving both positive and negative responses
depending on geographical region, temporal lag and
overall water availability in the environment (Pascual
et al. 2002). The negative nonlinear response at zero lag
described here for seasonal cholera to rainfall in
Parganas is also present in other districts of former
Bengal (results not shown). Future work should
examine the basis for a positive effect of rainfall in
other regions (e.g. Punjab), for longer lags than that of
the dilution effect itself (e.g. Madras; Ruiz-Moreno
et al. 2007), and at longer (interannual) temporal scales
as indicated by the recently reported association
between floods and cholera transmission in Matlab,
Bangladesh (Koelle et al. 2005).

As mentioned in §1, sharp transitions between
regimes have been observed in many ecological and
epidemiological systems. For epidemiological systems,
the identification of thresholds is important for the
development of climate-based alert systems (Curriero
et al., 2001; Charron et al., 2004; Grover-Kopec et al.
2005; Platonov 2006); for ecological systems, to
evaluate the impact of environmental changes on
ecological dynamics. More generally, a characterization
of the nature of the transition between states may serve
as a basis for the development of more mechanistic
models for intervention analysis.

The threshold model we have developed is static in
the sense that it does not involve the temporal
dynamics of the system itself. As such, the model is
concerned with the estimation of functional responses
to environmental drivers and differs in scope from the
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dynamical models of Grenfell et al. (1998) and Stenseth
et al. (2004). The latter are time-series autoregressive
models in which the threshold is not a function of an
environmental covariate but of the state of the system
itself, specifically of the (log) population density in the
previous year. The population evolves in time accor-
ding to a piecewise linear equation whose parameters
and additive noise level vary across the threshold.
Future developments of our model should investigate
two possible directions. The first one is to incorporate
probabilistic threshold responses to environmental
covariates within time-series models for ecological
dynamics. This could be done within the framework
of new inference methods for stochastic dynamical
systems (e.g. Ionides et al. 2006) to examine, for
example, the association of residuals with environ-
mental covariates. The second one is to incorporate the
type of threshold considered here, involving a mixture
of stochastic processes and changes in the variance,
within time-series models in which the autoregressive
variable itself exhibits a threshold, as in Grenfell et al.
(1998) and Stenseth et al. (2004). More generally, the
resulting approaches should be applicable to threshold
dynamics in other types of ecological systems (e.g.
Scheffer & Carpenter 2003).
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