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1. INTRODUCTION

Consider a general linear model

y=XB+e
where y = (y1,¥2,...,yn)" € IRY is a vector of observations, 3 € IRP is an unknown pa-
rameter vector, € = (€, €, ...,ex) € IRYN avector of errors, and X = (z1,79,...,25)" €

IRN*P represents the design, the known matrix of regressors—design points.

A well-known robustness measure for studying the behavior of an estimator in the
presence of outliers is the finite sample breakdown point, the minimum proportion of
outliers which may cause an arbitrary high bias of the estimator; see Huber 1981, Hampel
et al. 1986, Rousseeuw and Leroy 1987. The definition that prevails in the literature
reflect situations when regressors are prone to outliers—for instance, random. Employing
this definition, Maronna et al. (1979) determined that M-estimators have the smallest
possible breakdown point 1/N, a poor behavior exhibited even by estimators generally
considered robust—for instance, by the ¢; estimator.

However, as indicated by He et al. (1990) and Ellis and Morgenthaler (1992), this
behavior considerably changes under a definition of breakdown point that considers re-
gressors error-free, non-stochastic. Such an approach suites particularly models with
qualitative factors like ANOVA, or with regressors fully under experimental control. Let
N(X) := maxgo#{n : z) 3 = 0}, the symbol # hereafter standing for the number of
elements of a set. The maximal possible breakdown point within regression equivariant

estimators is

(1.1) % {N_NQ(X)JAJ?

see Miiller (1995, 1997). Mizera and Miiller (1999) pointed out that this upper bound
is attained by M-estimators whose score functions has variation exponent zero, the class
containing maximum likelihood estimators (MLE) based on t-distribution with v degrees
of freedom, in particular MLE based on Cauchy (v = 1) distribution (hereafter Cauchy
estimator).

The results of Mizera and Miiller (1999) were proved under the simplifying assumption
that the scale is known and equal to one. In applications, however, redescending estima-
tors are very sensitive to the scale factor; if it is too large, their behavior may be fairly
non-robust. Therefore, it is of considerable interest whether the same breakdown bounds

apply also for the more general setting with unknown scale. In this note, we answer this
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question affirmatively for the Cauchy estimator. In the context of breakdown point con-
sidering outliers in regressors, He et al. (2000) found that the Cauchy estimator has the
optimal performance among the MLE based on t-distribution.

In Section 2, we define the Cauchy simultaneous estimator of regression and scale; a
choice of a tuning constant for the scale leads to several possible versions. In Section 3,
we show that the breakdown point of all versions is reasonable, and that there is a version
attaining the upper bound (1.1). We derive the explosion and implosion breakdown point
of scale estimators separately; the overall breakdown point is taken to be their minimum.

Finally, a short conclusion is given in Section 4.

2. CAUCHY REGRESSION-SCALE ESTIMATORS

The maximization of the likelihood for regression and scale parameters for the errors
with the Cauchy distribution leads to the minimization of

N y —{ETB 2
1(B,0,y,X) := Z log [ 1+ ("T”) + N logo
n=1

with respect to (3,0) € © := IRP x (0,00). Let p(u) := log(1 + u?), and for K > 0, let

(Y1)
DK(ﬁ,U,y,X) :ZSD< LTn )+K10g0'
n=1

g

If K =N, then Dg(5,0,y,X) is equal to [(5,0,y, X). If K # N, we call the likelihood
function tuned; its minimization leads to the Cauchy simultaneous regression and scale

estimators

(2.1) (B,7) € argmin{ D (8,0,y, X) : (3,0) € O}.

where © = IR? x (0,00). A solution of (2.1) in © satisfies the system of equations
N T5
Yn — xnﬁ
2.9 In "I,
= (=)

(2.3) ™ <M> _K

o
n=1

11%' Since X(%) =0 forall o > 0if u =0, and
x(%) — 0 if 0 — oo and u # 0, we have that

N
(2.4) ZX(M> —0  ifo— oo

g

where 9 (u) == 5 and x(u) =

n=1
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On the other hand, y (%) — 1if 0 — 0 and u # 0; since y (g) is decreasing in o for
u # 0, we have

N P
(25) DX (HT") —#{n: y, £, 8} ifo—0.
n=1
By (2.4) and (2.5), there is no solution of (2.1) in O, if
K

Let
Ny, X) = mng(ﬁ,y,X)'

Note that M (X) = maxg.o N (3,0, X).
Theorem 1. Suppose that N(X) < N — £
(i) If N'(y, X) < N — £, then there is a compact ©g C © and (o, 00) € O such that

DK<ﬁ0,O'0,y,X) < DK(ﬁ7O-7y7X)

for all (B,0) € O\ Oy.
(i1) If there exists By such that N'(Go,y, X) > N — %, then
<

;ET%)DK(ﬂO,O-yy;X) DK(BOM%?J:X)
for all o € (0,00).

Proof. (i) Take 5y = 0 and o9 = 1. Assume that for every k € IN there exists ([, o%)
with Dy (8o, 00,y, X) > Dg(0Bk, 0k, y, X) such that ||(Gk, o) — (Bo, 00)|| > k or i > k.
There are three possible cases:
(a) (Br)kemv is bounded and (o} )rey contains a subsequence convergent to zero—thus,
we may w.l.o.g. assume that o, — 0.
(b) (ok)ken is bounded and (||Bk||) ke contains a subsequence tending to infinity—
thus, we may w.l.o.g. assume that || G| — oo.

(c) A subsequence of (o%)ren converges to oo; w.l.o.g. we may assume that o — oo.
We will show that Dy (B, ok, y, X) is unbounded in all three cases—a contradiction prov-
ing (i).

Case (a). We may assume w.l.o.g. that $;, — (. Then

N T 2
Zlog <1+ (w) ) + K log oy,
n=1 Ok



— 278\ >
> Z log <1+(M) )—i—Klogak
Ok
niynF,, 8
1
= Z log (? (Uz + (Yn — x;ﬁk)Q)) + K log oy,
nyn £, B b
= Z log (07 + (yn — ., Br)*) — 2#4{n : yn # x, B} log oy, + K log oy,
niyn ] B
% m

because Zny #Tﬁlog (ak + (yn — xlﬁk)Q) > —o0 if 6, — 0 and 3, — 3, logop — —o0
if o), — 0, and

—2#{n: yn#xzﬁ}%—l{:K—QN—l—Q#{n: yn:xzﬁ}
< K-2N+2N(y,X) <0.

Case (b). W.lo.g. we may assume 5;/||Ok]| — 8. Then o2/||Gkll> — 0, yn/l|Bkll — O,
z,) B./||Bkl| — =) 8. Since oy, is bounded and

K—24#{n: 2]3#0} <K —-2N +2N(X) <0,
we obtain
(K —2#{n: z!3+#0}) logop > —oo0.

This implies

Zl< ( %))
og |1+ + K log oy

Yn — T, Bk ?
> Z log [ 1+ (7” . - ) + K log oy,
ni ] B£0 k
2 2 2
_ Z log HﬁlcQH ( ;kz +( %n _ T gk ) )) + K log o,
T oo o \MBkll 15 ren|
o Y Bk
2 P\ Tt Tl Tad

+ #{n: l‘zﬁ # 0} log Hﬁk”z + (K —2#{n: Ijﬁ # 0}) log oy,

— OQ.
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Case (c). If o — oo, then

N —,ZCTﬁ 2
Zlog <1+ (M> ) + K logoy, > K log 0, — 0.

o
n=1 k

(ii) For every o € (0, 00),

= o — 2000\
Dk (Bo, 0,9y, X) = Zlog <1+ <%"0) ) + K logo
n=1

1
= Z log (; (0 + (yn — x:,ﬂo)z)> + K logo
n: ?Jn#x;[ﬂo

= Y log (0% + (yn — ) 50)7) + (K —24{n: yn # z, Bo}) logo.

n: yn#a,; Bo

The assumption N (B, y, X) > N — & yields
K—=2#{n: y.#z. 6} =K —-2N+2N(By,y, X) > 0.

If K—2N+2N(Bo,y,X) > 0 (that is, K is odd), then lim, .o D (5o, 0,y, X) = —c0. If
K—-2N + 2/\/’(607y7 X) = Oa then DK(ﬁO; O’,Z/,X) = Zn: yn#z,) Bo lOg (02 + (yn - $IB0)2)
and (ii) holds with a finite limit. O

In view of Theorem 1, we may formulate the following definition. Let © = IRP x [0, c0).

Definition 1. A Cauchy regression-scale estimate with tuning constant K is, for given y

and X, any point (3, 00) in © such that

K
(Bo, 00) € arg (ﬂm%n@DK(ﬂ,a,y,X) it N(B,y, X) < N — 5} for all 5 € IRP;
,0)€E

= (50,0), i (50,0, X) 2 N =

~

For Cauchy regression-scale estimators, we use the notation C(y, X) = (6(y, X),o(y, X)),
suppressing the dependence on K.

3. BREAKDOWN POINTS

There are two types of breakdown of a regression-scale estimator caused by outliers (see
Hampel et al. 1986, Rousseeuw and Croux 1992, 1993): explosion, when the estimator
for the regression parameters or the scale estimator goes to infinity, or implosion, which

means that the scale estimator goes to zero. Assuming that the regressors are error-free
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and non-stochastic, we allow only for outliers in the observations y,, in accord with He
et al. (1990), Ellis and Morgenthaler (1992), and Miiller (1995, 1997).

Definition 2 (Breakdown point). Let C' = (B, o) be an estimator for (3,0). The explo-
sion breakdown point €*(C,y, X) of C' is defined by

e (Cy, X) = % min{M: sup ||C(y, X)|| = oo};

yeB(y,M)

the implosion breakdown point €°(C,y, X) of C' is defined by
1
0 X):=—=min{M: inf &7y X)=
e(C,y,X) = + min geé?y,M)(’(y’ )=0¢,

where
Bly,M):={ge R": #{n: 7, #y} <M}.
The breakdown point €*(C,y, X) of C' is defined to be
€ (C,y, X) = min{e*(C,y, X), " (C,y, X)}.

If the estimator is not unique, then we adopt the least favorable values—those maximizing
|C(y, X)|| and minimizing 7 (y, X).)

Proposition 2 (Explosion without implosion). Suppose there is a sequence y* € B(y, M)
such that the Cauchy estimates C(y*, X) = (B(y*, X),5(y*, X)) satisfy ||C(y*, X)|| — oo
and m =O(1). Then M > min{& N — £ — N(X)}.

Proof. Assume y, = y* forn = 1,...,N — M for all k € IN, and let 8, := B(y*, X),
o =0 (y", X). Then one of the following cases takes place:

(a) ox — o0 and |G| = O(1).

(b) ox — oo and o /|| k|| — 0.

(¢) o) — 00, 0%/ ||Bkll = O(1), and || G| /oy = O(1).

(d) o) — oo and ||Bk||/or — 0.

(e) ||Bkl| — o0, o, = O(1), and 1/0y, = O(1).

Cases (a) and (b). If o, — oo, then N(y*, X) < N — & for almost all k € IV so that
(Bk, o%) is a solution of (2.1), lying in ©. Since it satisfies (2.3),

K K (y"_wmy - Yk — a1

Ok n __ “*ntk

7 eyt ()
n=1 1+ <M> n=N—M+1 k

Ok



N—M
(yn - xzﬂk)Z
< 5 5 + M.
In Case (a) we have
N—M N—M

Z (Y — 2 B)* Z 1 0
- 2
p— op 4 (Yn — ) Br)? ! m +1

because (y, — ,, Bx)* is bounded for all n = 1,..., N — M. It follows that M/ > £ In
Case (b) we may assume w.l.o.g. that G/||Gk|| — Bo. Since y,,/||Bk|| — 0, we have

N-M

— 0,

2
N—-M Yn T Bk
(o —2p Bu)? 3 (nﬁku “n ||ﬂk||>

Z 2 T 2 2 2
— O}, + (Z/n - xnﬂk) — ( Ok ) ( Yn Tﬁ_k>
n=1 =L A\1aT) T \T6T T T AT

yielding M > £ in Case (b) too.
Case (c): Again, oy, is away from 0, so that (G, o) are solutions of (2.1), lying in ©. Since
¢ is symmetric and subadditive, there exists L > 0 such that ¢(s) — p(t) — L < ¢(t — s)
and —p(s) — L < o(t — s) — ¢(t) for all s,t € IR; see Mizera and Miiller (1999). This
property implies that
0> DK(BkaalmykaX) - DK(07 17ykaX)
= D (e, 0n,y", X) = Dic (0,01, 4*, X) + Dk (0, 04,4, X) = D (0,1, 4", X)

N_M T N k T
n — Ty n — Tp
= To(Bn) e S (B Ko
O Ok
n=1 n=N—-M+1
N-M y N S
S e(B) - X e(B) - Kema
n=1 Tk n=N-—-M-+1 k
NoM N o
; Z¢(_n)+ 3 ¢(£)+Klogak
n=1 Tk n=N—M+1 k
N-—-M N
= > olym) - o(yk)

A4
¥
S
S
A~
)
S
)
ol
~_
|
b
i
g
S
A~
5
~__
|
Il
)=
+t
S
A~
s
S
@
ol
~_
|
=
|
~
|
h

n=1 Ok n=1 Tk n=N-M Tk
N—M y N—M

+ v (—") - > »yn)
n=1 Tk n=1



n=N—M+1 n=N—M+1
Setting
N—M T N T N—M N—M
Ay = (x"ﬁk) - > (x"—ﬁk) —-NL-> o <%) — > ),
n—1 Tk n=N—M+1 Tk n—1 Tk —1
we have

n=N—M+1 n=N—M+1
N yk 2 N
= A+ Z log (1 + (—”) ) - Z log (1+ (y%)?)
n=N-M+1 r n=N-M+1
+2 M log oy + (K — 2M) log oy,
B 2
N (1 + (%) > o}
= A+ Z log : + (K —2M) logo
= 1+ (yh)? ’
n —M+1

N 2 k)2
= A+ Z log<0k_:_ﬂ)+([(—2]\/[)logok.

n=N-—-M+1

Using the fact that o > 1 for large k, we obtain

dividing by log o}, gives

(3.1) 0> A + (K —2M).

log o,

We may assume w.l.o.g. that 3./||Bs]| — Go and o/||Bk|| — c. Then together with
Yn/0r — 0 we obtain that

= AR () ()

n=1 (18l n=N-M+1 1Bl

is bounded. Hence Ay /log o) converges to 0 so that the limit of (3.1) gives M > K/2.
Cases (d) and (e). Since oy is greater than 0, we can use (2.3). Assuming w.l.o.g. that
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B/ Brll — Bo, we obtain with y,,/||Gk|| — 0

N—M N
K _ D (Yn — 2, Bp)? - X(y’z—xlﬂk)
2 n—1 O-I% + (yn - x;zrﬁky Ok

N—-M (y_n — T B )2
> Z 18kl A

— yn_T&)
"=l 1B *‘(Hﬂu| Lo 18]

This implies M > N — £ — N(X). O

Proposition 3 (Explosion and implosion). Suppose there is a sequence y* € B(y, M)
such that the corresponding Cauchy estimates C(y*, X) = (B(y*, X),5(y*, X)) satisfy
18(y*, X)|| — oo and 5(y*, X) — 0. Then M > N — & — N(X).

Proof. Again, assume y, = y* forn =1,...,N—M for all k € IN, and let 3, := B(yk,X),
o := o(y*, X). There are two possibilities. We have o, > 0 for almost all k € IN; then
the assertion follows as for the Cases (d) and (e) in the proof of Proposition 2. Or, we
have g, = 0 for almost k£ € IN. In the latter case, (3 satisfies

#ln: of = ol B = NG yh X) 2 N = 5

Since ||3]| — oo the equality ¥, = y¥ = 2 8}, can be satisfied forn € {1,..., N—M} only
if y, = 0 = x] 3, that means it is satisfied for at most N'(X) elements of {1,..., N —M}.

Hence

M4 N(X) = N (B o, X) 2 N — o

so that M > N — £ — N(X) follows. O

Theorem 4 (Explosion breakdown point). The explosion breakdown point € (C,y, X) of

the Cauchy regression-scale estimator satisfies

e (C,y, X) 2% min{%, N—g—N(X)}.

The lower bound is

1 N(X) o
5 E=N;
1 N(X) o
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P’/’OOf. Let (yk>k€ﬂ\f any sequence in B(ya M) with ||C(yk7X)|| - ||<B(ykax)78(yka){))”
— 00. Then we have explosion with or without implosion so that the assertion follows
from Proposition 2 and 3. 0

~

The Cauchy regression-scale estimator is regression equivariant: [y + X3, X) =

~

By, X) + B for all y, X and 3. Hence, the upper bound (1.1) for regression equivari-
N-N(X)+1
2
K = N — N(X). Therefore, the Cauchy regression-scale estimator with tuning constant

ant estimators provides €*(C,y, X) < % { J, where equality holds in the case
K = N—N(X) has the highest explosion breakdown point which is possible within regres-
sion equivariant estimators. However, the untuned Cauchy estimator (K = N) exhibits
similar features if /(X)) is small.

A similar result holds for the implosion breakdown point. Since the Cauchy scale
estimator is allowed to be equal to 0, we investigate the implosion only for data points
(y, X) with 5(y, X) > 0, when NV (y, X) < N — &.

Proposition 5 (Implosion without explosion). Let o(y, X) > 0. If there is a sequence
y* € By, M) such that C(y*, X) = (B(y*, X),5(y", X)) satisfy |B(y*, X)|| = O(1) and
o(y*, X) — 0, then M > N — & — N(y, X).

Proof. There are two possibilities:

(a) For almost all k € IN we have 5(y*, X) = 0: there exists B with N'(B, y*, X) > N—%.
This implies M > N(Bg, v*, X) = N(y, X) > N — & — N(y, X).

(b) There is a subsequence with o}, := 7(y*, X) > 0. We may w.lo.g. assume that
B = B(y*, X) — [y. According to (2.3), we obtain

N-M k

K (Yn — ml—ﬁk>2 = (Y — J/'Zﬂk)z
2 Z o + (Yo — 2 Br)? s op + (Yk — 2} By)?

n=N—-M+1 K

(yn - xIﬁk)Q
D D o N

n ‘/E;Ll—/gk 2
Z (y )

O-I?; + (yn - x;zrﬁky

v

n=1,...,N—M: y,#z,} Bo
— #{n=1,...,N—=M: y, #x, 0}
= N-M-#{n=1,....N—M: y, =25}
sothatMZN—%—./\/’(y,X). O
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Theorem 6 (Implosion breakdown point). If (y, X) > 0, then the implosion point
2(C,y, X) of the Cauchy regression-scale estimator satisfies

(Cy.X) > + mm{N—g—N@,X), N—?—N(X)}-

Proof. The assertion follows from Proposition 3 and 5, for any sequence (y*)reny any
sequence in B(y, M) with 7(y*, X) — 0. O

Usually—with probability 1 for data sampled from continuous populations—we have
that M(y, X) < N(X). Theorems 4 and 6 then imply that the breakdown point of the
Cauchy regression-scale estimator bounded from below by

1 K K
N mm{;, N—?—N(X),}

and attains the maximal value when tuning constant K = N — N (X).

4. CONCLUSION

Our results imply, in particular, that the breakdown point of the simultaneous lo-
cation and scale Cauchy estimator is 1/2. Copas (1975) showed that in this case the
solution of the estimating equations is unique, except for the very special case when
half of the observations is concentrated at one point and the another half at another
point. Although Gabrielsen (1982) showed that this property in general does not hold
in regression-scale setting, Lange et al. (1989) indicated that it is true for reasonable
well-behaved datasets. Nevertheless, theoretical results that good breakdown behavior of
redescending M-estimators requires their appropriate definition: while breakdown point
of arbitrary roots may be poor, the breakdown point of the regression-scale Cauchy esti-
mator defined via global minimization is high—when tuned optimally, maximal.
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