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LAB 5 INSTRUCTIONS 
 

BINARY LOGISTIC REGRESSION 
 

In some statistical applications the response variable is binary (takes on one of two values, zero or one). 

Binary logistic regression describes the relationship between a binary categorical dependent variable and 

one or more independent variables. As the mean of a binary variable is a probability, the logistic regression 

model expresses the probability as a function of explanatory variables.  
 

The binary response can be used to model a categorical variable with two categories (mother gives birth to 

a low weight baby or she does not) based on a number of explanatory variables.  

 

In this lab, you will learn how to fit a binary logistic regression model in SPSS. We will demonstrate some 

basic features of SPSS using the following example. 

 

Example: The Low Birth Weight Study 

 

Low birth weight (less than 2500 grams) is an outcome that has been of concern to physicians for years. 

This is due to the fact that infant mortality rates and birth defect rates are very high for low birth weight 

babies. Moreover, low birth babies usually suffer from many chronic conditions in their adulthood such as 

obesity, diabetes, and cardiovascular disease. The obstetrical literature provides evidence that a woman's 

behavior during pregnancy (including diet, smoking habits, and receiving prenatal care) can greatly alter 

the chances of carrying the baby to term and, consequently, of delivering a baby of normal birth weight. 

In this exercise, we will use a 1986 study at the Baystate Medical Center in Springfield, MA in which data 

were collected from 189 women, 59 of which had low birth weight babies and 130 of which had normal 

birth weight babies. The goal of the study was to identify risk factors associated with giving birth to a low 

birth weight baby. See: Hosmer and Lemeshow, Applied Logistic Regression: Second Edition, 2000. 

Data were collected as part of a larger study at Baystate Medical Center in Springfield (MA). The goal of 

this study was to identify risk factors associated with giving birth to a low birth weight baby. Data were 

collected on 189 women, 59 of which had low birth weight babies and 130 of which had normal birth 

weight babies.  We are interested in understanding the variables that predict the likelihood of a mother 

giving birth to a baby with low-birth weight. Four variables which were thought to be of importance were 

age, weight of the subject at her last menstrual period, race, and the number of physician visits during the 

first trimester of pregnancy.  

 

The above data are available in the SPSS file that can be downloaded to your local station by clicking on 

the link below. The folowing is the description of the variables in the data file: 

 

 
Column   Variable Name  Description of Variable 

 

1       id   mother’s identification number (1-189), 

2      low   1 if birth weight less than 2.5kg (low birth weight), 0 otherwise; 

3       age   mother's age in years, 

4      lwt   mother's weight in pounds at last menstrual period, 

5      race   mothers race (1=white, 2=black, 3=other) 

6      smoke  smoking status during pregnancy, 1 if yes, 0 if no; 

7        bwt   birth weight (in grams) 

 

 

DOWNLOAD DATA 

 

http://www.stat.ualberta.ca/statslabs/stat337/files/lowbirthweight.sav
http://www.stat.ualberta.ca/statslabs/stat337/files/lowbirthweight.sav


2 

 

We will use the binary logistic regression to develop a model that can estimate the probability of low birth 

weight (defined as a baby weighing less than 2500 grams) given the mother’s age and race, the weight 

during her last menstrual period, and whether she smoked during the pregnancy. 

 

 

1. CROSSTABS 

 

Before we apply logistic regression model to make inferences about the data, we will use cross-tabulation 

to carry out a preliminary explanatory analysis as some important explanatory variables are categorical. 

Cross-tabulation analysis, also known as contingency table analysis is used to analyze the relationship 

between categorical variables. A cross-tabulation for two categorical variables is a two dimensional table 

(two-way table). Its rows list the categories of one variable and its columns list the categories of the other 

variable. Each cell in the table is the number of observations or percentage of observations with certain 

outcomes on the two variables.   

 

Crosstabs' statistics in SPSS are computed for two-way tables only. If you specify a row, a column, and a 

layer factor (control variable), the Crosstabs procedure forms one panel of associated statistics and 

measures for each value of the layer factor.  

 

In order to obtain a cross-tabulation is SPSS, click Analyze in the menu, then Descriptive Statistics, and 

Crosstabs. 
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The following output is obtained: 

 

 
 

 
 

The hypotheses tested in the Pearson Chi-Square test are as follows: 

 

H0: P(low birth weight| smoking) = P( low birth weight| not smoking), 

HA: P(low birth weight| smoking) ≠P( low birth weight| not smoking)  

 

The small p-value of 0.026 indicates a strong relationship between low birth weight and smoking status. 

 

 
 

The tables above provide the counts and corresponding percentages for each combination of the response 

variable (low) and each of the two categorical variables (smoke or race) and also provide the results of Chi-

Square Tests that measure the strength of the association for each pair.   
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According to the table, 25.2% of the no-smoker mothers gave birth to low-weight babies but 40.5% of 

smoker mothers did so. It looks that mothers who smoke are more likely to give birth to low-weight babies. 

This is also confirmed by the p-value 0.026 of the Pearson’s Chi-Square test. There is a significant 

relationship between low birth- weight and the mother’s smoking status. 

 

The table that summarizes the relationship between race and low birth weight shows that only 24% of while 

mothers gave birth to low-weight babies, but 42.3% of black mothers did so and 37.3% of mothers of other 

race. The p-value of the Pearson’s Chi-Square test of 0.082 indicates suggestive but inconclusive 

relationship between low-birth weight and race. 

 

The p-values of the Pearson chi-square test for each race assess the strength of an association between 

smoking status and low birth weight for each race.  

 

The odds of low-weight baby for smokers= 30/44 

The odds of low-weight baby for non-smokers= 29/86 

 

30 / 44
2.021944 2.022.

29 /86
The odds ratio    

 

Thus the odds of giving birth to low-weight baby for smokers are 2 times as large as the odds of giving 

birth to low birth weight babies by non-smokers. 

 

It is also possible to examine the interaction of the two categorical variables, smoke and race using the 

Crosstabs.  If you specify a row as low birth weight, a column as smoking status, and a layer factor (control 

variable) as race, the Crosstabs procedure forms one panel of associated statistics and measures for each 

value of the layer factor.  
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There are differences in incidence of low birth weight among smoking mothers for the three races. 60% of 

black mothers who smoke gave birth to low birth weight babies though only 31.3% of black non-smoking 

mothers did so (note the relatively small sample size for the race group). 36.5% of smoking white mothers 

gave birth to low birth weight babies though only 9.1% of non-smoking mothers did so. There are much 

smaller percentage differences  of low birth weights for non-smoking and smoking mothers from other 

races. 

 
2. BINARY LOGISTIC REGRESSION MODEL 

 
Assume that the response is a binary variable- meaning it takes on one of two possible values 0 or 1. If, for 

example, Y is a response taking on the value 1 for mothers of low birth weight babies and 0 for the other 

mothers, then the mean p of Y is a probability of giving birth to a low birth weight baby.  

 

A regular linear regression model cannot be used when the response Y is a binary variable. Indeed, a 

simple linear regression model defined as 

 

0 1p= (Y|X)= X     

 

would allow estimates below zero or above one though tough the probability p must be between 0 and 1. 

Moreover, the assumptions of constant variance and normality would not be satisfied for the model. When 

the values can only be 0 or 1, residuals (error) would not have a constant spread about a line at zero. 
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Finally, since binary responses can take on only two values, 0 and 1, it is obvious those responses cannot 

vary about the mean according to a normal distribution as a normal distribution is impossible with only two 

values.  

 

The above obstacles in modelling a binary response can be avoided by using a logistic regression model. 

 

If p is the probability of an outcome (a success), then the odds of the outcome are defined as 

 

.
1

p
odds

p



 

 

Note that if odds>1, then the desired outcome is more likely to occur. Note that given odds, the probability 

p can be obtained as p=odds/(1+odds). 

 

Consider the logistic regression model with smoke as the explanatory variable: 
 

0 1ln( ) ln ,
1

p
odds smoke

p
 

 
    

 
 

 

where 0<p<1 is the probability of low birth weight. Note that ln( ) .odds    The logistic 

regression models log-odds of low birth weight as a linear function of the explanatory variable smoke. 

From the above, 

 

smokers non-smokers 0 1 0 1 1ln( ) ln( ) 1 ( 0) ,odds odds              

 

or equivalently 

smokers
1

non-smokers

ln ,
odds

odds
 so     

smokers
1

non-smokers

exp( ).
odds

odds
  

 

 

In order to run the logistic regression for the low birth weight data, click Analyze in the main menu, then 

Regression, and finally on Binary Logistic… Logistic Regression dialog window will appear. Move the low 

variable into the Dependent list and smoke into the Covariates list. 
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There are 130 normal birth-weights and 59 low birth weights. Thus the odds of low birth weight are equal 

to 59/130=0.453846. The odds are confirmed in the SPSS output for the model with a constant only:  

 

 
 

For the model with the explanatory variable smoke, we obtain the following output: 

 

 
 

The estimated logistic regression model (smoke=1 for smoking and smoke=0 for non-smoking mothers): 

 

ln 1.087 0.704 ,
1

p
smoke

p

 
    

 

 

The intercept of -1.087 shows the log-odds of low birth weight birth for the reference group (non-smokers, 

smoke=0). To convert this into odds, we take the exponential: exp(-1.087)=0.337227. This translates into 

probability of low birth weight for non-smoking mothers equal to 0.337227/(1+0.337227)=0.252184. 

The slope shows how the log-odds of low birth weight change with a one-unit change in the independent 

variable smoke. The positive sign of the slope shows that smoking mothers have higher likelihood of giving 

birth to babies with low birth weight.  

In our case, the slope of 0.704 shows the difference in the log-odds of low birth weight between smoking 

and non-smoking mothers. In other words, the slope of 0.704 estimates the log-odds ratio for low birth 

weight between smoking and non-smoking mothers. To convert this into an odds ratio, we take the 

exponential: exp(0.704)=2.021824≈2.02.  

Thus odds of low birth weight birth for smoking mothers are 2.02 times odds of low birth weight birth for 

non-smoking mothers. As odds of low birth weight birth for non-smoking mothers are 0.337227, the odds 

of low birth weight for smoking mothers are 2.021824*0.337227=0.681813. 

The same result can be obtained by using the estimated regression line. Indeed, the log-odds of low birth 

weight baby for smoking mothers are -1.087+0.704=-0.383 Thus the odds of low birth weight for smoking 
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mothers are exp(-0.383)=0.6818. The above results are consistent with the results from the cross-tabulation 

on page 3. 

3. ASSESSING THE FIT  

 

There are several tools to assess the “fit” of binary logistic regression model.  

 

3.1 CLASSIFICATION TABLE  

 

One way of assessing how well the model fits the observed data is to obtain a classification table. This is a 

simple tool which indicates how good the model is at predicting the outcome variable. The classification 

table is automatically generated in SPSS binary regression output for the data. As an example, consider the 

fitted model binary regression model for the low birth weight data obtained above. 

 

First, we choose a “cut-off” value c (usually 0.5). For each subject in the sample we “predict” their babies 

birth weight status as 0 (i.e. normal) if their fitted probability of being normal birth weight is greater than c, 

otherwise we predict it as 1 (i.e. low). We then construct a table showing how many of the observations we 

have predicted correctly.  

 

 
 
Note that only one explanatory variable, smoke was used in the above fitted model for the data. The 

percentage of correct predictions reported in the output for the data is 68.8%. Generally, the higher the 

overall percentage of correct predictions, the better the model. However, there is no formal rule of thumb to 

decide what percentage of correct predictions is adequate.  

 

Similarly as in linear regression, we can use two approaches for testing whether explanatory variables 

explain a significant fraction of the variability in the response variable: 

 

1. Testing the contribution of individual explanatory variables (Wald’s tests), 

2. Testing the contribution of several explanatory variables simultaneously (Omnibus test, Hosmer and 

Lemeshow goodness of fit test and the most general: Drop-in-Deviance test).  

 

The tests will be discussed in detail in the subsequent sections. 

3.2 THE WALD TEST 

The Wald test is used to test the significance of individual logistic regression coefficients for each 

independent variable (that is, to test the null hypothesis that a particular coefficient is zero). The Wald 

statistic is the squared ratio of the unstandardized logistic regression coefficient to its standard error. The 

Wald test corresponds to significance testing of coefficients in ordinary least squares regression. Wald’s 

tests are conceptually identical to t‐tests for individual regression parameters in multiple regression. 

Does smoking status of mothers have any association with giving birth to low birth weight babies? We will 

answer the question using Wald statistic by testing relevant hypotheses in terms of the odds ratio (OR) of 

the association between smoking status and low birth weight birth.  
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The relevant hypotheses to answer the above question are  

 

1)exp(: 10  ORH  (no association) versus 
1: exp( ) 1AH OR    . 

 

The Wald’s test statistic for this test is 4.852; it has a chi-square distribution with 1 degree of freedom 

under the null hypothesis. The corresponding p-value is reported as 0.028. Thus there is convincing 

evidence to reject the null hypothesis. There is strong evidence of association between smoking status and 

low birth weight. 

 

The 95% confidence interval for 1e  is (1.081, 3.783). This interval could be requested as part of the SPSS 

output by checking the relevant box in the logistic regression Options… window. Inference from the 95% 

confidence interval is consistent with the outcome of the Wald’s test in part (c).  

 

Clearly, the interval does not include 1. If 1 were to be included in the interval, the null hypothesis of part 

(c) would not have been rejected. The inclusion of 1 in the 95% confidence interval for the odds ratio 

would imply 1 is a plausible value for the ratio. Thus, there is evidence of association between smoking 

status and low birth weight. 

 

Now you will expand the simple logistic model above to include race as another predictor. We will use the 

binary regression tool in SPSS to fit the model with the odds of low birth weight as dependent variable and 

smoking status and race as covariates. 

 

The logistic model with the log-odds of low birth weight as dependent variable, smoking status and race as 

independent variables has the form 

 

0 1 2ln
1

p
smoke race

p
  

 
   

 

 

 

or equivalently 

 

0 1 2 2ln 1 2,
1

p
sex race race

p
   

 
    

 

 

 

where race1 and race2 are dummy variables for white and black mothers, respectively. For example, race1 

is equal to one if a mother was white and equal to zero if they were of any other race. The dummy variable 

race2 is defined as equal to one if a mother was black and equal to zero if they were of any other race. 

 

Note that for other race group both race1 and race2 are zero. Thus the third race group is automatically the 

reference category (odds for low birth weight for all the other categories will be compared to the reference 

in the output).  

 

The categorical variable race has been replaced by the dummy variables race1 and race2 as follows: 
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Specify the entry method: here Enter means to add all variables to the model simultaneously.  

 

 
 

The estimated logistic regression is: 

 

ln 0.732 1.116 1.109 1 0.024 2
1

p
smoke race race

p

 
        

 

 

 

According to the above output, the overall variable smoke is statistically significant with the p-value 

reported as 0.003. The odds of low birth weight for smoking mothers are exp(1.116) =3.053 of the odds for 

non-smoking mothers. 

 

Based on the above output, the overall variable race is statistically significant with the p-value reported as 

0.01. There is no coefficient listed because formally race is not variable in the model. Instead, dummy 

variables race1 and race2 which code for race are in the equation, and those have coefficients.  

 

In order to compare the odds of low birth weight for smoking white and other race mothers, we have 

 

0 1 2 3

0 1 2 3

ln( ) 1 1 0,

ln( ) 1 0 0.

white

other

odds

odds

   

   

      

      
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Thus ln( )whiteodds - ln( )otherodds = 0 1 2( 1 1)      -
0 1 2( 1) ,      

 

and  

 

2ln ,
odds

white

other

odds
 so     

2exp( ).
odds

white

other

odds
  

 

Thus the odds of low birth weight for white mothers were exp(-1.109)=0.330 times of those of mothers in 

the other races group. According to the above SPSS output, the estimated odds ratio of low birth weight for 

black and other race mothers is 0.976.  

 

3.3 THE HOSMER-LEMESHOW GOODNESS-OF-FIT TEST 

The Hosmer-Lemeshow test is a commonly used test of the overall fit of a logistic regression model to the 

observed data. The principle idea is to create groups of cases and construct a “goodness-of-fit” statistic by 

comparing the observed and predicted number of events in each group. In the low birth weight example, the 

cases are divided into a number of approximately equal groups based on values of the predicted probability 

of having “low” birth weight. The differences between the observed number and expected number 

(calculated by summing predicted probabilities based on the model) in each group are then assessed using a 

chi-square test.  

 

The SPSS output for the Hosmer and Lemeshow test applied to the low birth weight data is shown below.  

 

 
 
We will now assess the fit of the logistic model with the Hosmer-Lemeshow goodness-of-fit test. The test 

is based on the value of the chi-square statistic that measures the discrepancy between observed and 

expected frequencies. The Hosmer and Lemeshow goodness-of-fit statistic is calculated as  
 

2( )
.

cells

Observed Expected

Expected


  

 

The idea is that the closer the expected numbers are to the observed, then the smaller the value of this 

statistic. So, small values will indicate that the model is a good fit - large values of this statistic indicate the 

model is not a good fit to the data.  

 
We define the null and alternative hypotheses as follows: 

 

:0H  The model is a good fit for the data 

:aH  The model does not fit the data well 
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If the Hosmer-Lemeshow goodness-of-fit test has p-value greater than 0.05, we fail to reject the null 

hypothesis that there is no difference between observed and the model-predicted values. The SPSS output 

for the low birth weight data is displayed below: 

 

 
 

The value of the test statistic is 2.306.101, it has a chi-square distribution with 3 degrees of freedom and the 

corresponding p-value is reported as 0.511. Thus there is no evidence to reject the hypothesis that the 

model fits the data. 

 

3.4 THE OMNIBUS TEST 

The Omnibus tests if the model with predictors is significantly different from the model with only the 

intercept. The test is an alternative to the Hosmer-Lemeshow test discussed above. The test may be 

interpreted as a test of the capability of all predictors in the model to predict the response variable.  The test 

can provide evidence that at least one of the predictors is significantly related to the response variable.  

 

The omnibus tests of model coefficients table for the low birth weight: 

 

 
 

As the Enter method was used (all explanatory variables are entered in one step), so there is no difference 

for step, block, or model, but a stepwise procedure applied to the data would produce results for each step. 

The omnibus table is an analog of the ANOVA table in multiple linear regression. 

 

The hypotheses for a test of the utility of the model are: 

 

0 1 2 3: 0H       vs. : Not all coefficients are equal to zero.aH  

 

The G-statistic for this test is 14.697, it has a chi-square distribution with 3 degrees of freedom and the 

corresponding p-value is 0.002. Thus there is strong evidence against the null hypothesis. This model is 

therefore useful in predicting the log-odds of low birth weight compared to a null model (a model with a 

constant only). Note that this outcome is not surprising given the significance of the variable smoking 

status established earlier. 

 

3.5 THE DROP-IN-DEVIANCE 

The Drop-in-Deviance (likelihood ratio test) test is used to assess the adequacy of a reduced model relative 

to a full model. In particular, the test can be used to compare the full model with the intercept-only model. 

The Drop‐in‐Deviance test is analogous to the Extra‐sum‐of‐squares F‐test in linear regression and 

compares the change in deviance between a full and reduced model. We can use this test to examine the 

contribution of several explanatory variables simultaneously. 
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Deviance is the sum of the deviance residuals and represents the discrepancy between the responses 

observed and those predicted by the fitted model.  Thus  

 

Drop in deviance=Deviance from reduced model–Deviance from full model.  

 

The drop in deviance follows approximately a chi-square distribution with degrees of freedom equal to the 

difference between the numbers of parameters in the full and reduced models. 

 
If the drop in deviance is small (and the P‐value is large), the reduced model explains about the same 

amount of variation in the response variable as the full model. If the drop in deviance is large (and the 

P‐value is small), the reduced model is inadequate as compared to the full model‐the extra terms in the full 

model are needed to explain additional variation. 

 

We will use the drop-in-deviance test and the above SPSS output to determine whether or not the 

explanatory variable race is adding significantly to the predictive ability of the model.  

 

The hypotheses of interest are:           

 

0: 320  H   

:aH At least one of these coefficients is not zero. 

The relevant SPSS outputs are the model summary table for the reduced model with smoking status as the 

only explanatory variable and the full model with smoking status and race as the explanatory variables: 

 

 
 

 
 

The drop-in-deviance test is also known as the likelihood ratio test and has the statistic: 

 

2(reduced model log likelihood -full model log-likelihood)

229.805 219.975 9.83.



  
 

 

The likelihood ratio statistic has a chi-square distribution with 2 degrees of freedom. The p-value of the test 

is the probability  2(2) 9.83P   , which is between 0.005 and 0.01 based on the table of percentiles for 

the chi-square distribution with 2 degrees of freedom in the textbook.  

 

Thus race adds significantly to the predictive ability of the model. The outcome is consistent with the 

Wald’s test in the output where the p-value for race is reported as 0.01. 
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Remark: In most cases the Wald test and the likelihood ratio test (drop-in-deviance test) lead to the same 

conclusion. In some cases the Wald test produces a test statistic that is non-significant when the likelihood 

ratio test indicates that the variable should be kept in the model. This is because sometimes the estimated 

standard errors are “too large” (this happens when the absolute value of the coefficient becomes large) so 

that the ratio (and thus the Wald statistic) becomes too small. The likelihood ratio test is the more robust of 

the two and is generally to be preferred.  

3.5 THE MEASURES OF THE PROPORTION OF VARIATION EXPLAINED 

In linear regression, one measure of the usefulness of the model was the coefficient of determination R
2
, 

which gave the proportion of variation in the outcome variable being explained by the model. Several 

statistics have been proposed in the case of logistic regression that can be considered roughly equivalent in 

interpretation to the coefficient.  

 

The Cox and Snell’s R
2 
and Nagelkerke’s R

2 
(adjusted R

2
) based on calculation of the relative change in the 

log-likelihood for the intercept-only-model to the full model. The latter can attain a value of one when the 

model predicts the data perfectly. SPSS gives the values for these two statistics in the “Model Summary” 

table. 

 

 

 
The interpretation is that the model (with smoking status and race as the explanatory variables) explains 

about 10% of the variation in the data.  

THE MODEL WITH INTERACTION 

Are the log odds of giving birth to low-weight baby associated with race different for non-smoking and for 

smoking mothers? In order to answer the question, consider the following model with race and smoking 

status interaction 

 

0 1 2 3ln
1

p
smoke race race smoke

p
   

 
      

 

 

 

Note: To include the interaction terms in logistic model in SPSS, select both smoke and race in the left 

panel and then select >a*b>.  

 

The estimated regression model is 

 

ln 0.336 0.223* 0.216* 1 0.742* 2
1

1.527 1 0.971 2

p
smoke race race

p

race smoke race smoke

 
      

 

     
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As the p-value for the interaction of smoke and race is 0.221, there is no evidence that log odds of giving 

birth to low-weight baby associated with race is different for non-smoking and smoking mothers. 

 

4. THE FULL MODEL  

Now we will evaluate the significance of the remaining explanatory variables: ht, lwt and age in the logistic 

model. We will use forward LR (stepwise regression with likelihood ratio) method to add the significant 

variables to the model. 
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