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LAB 4 INSTRUCTIONS 
 

MULTIPLE LINEAR REGRESSION 
 
Multiple linear regression is a straightforward extension of the simple linear regression model. It models 

the mean of a response variable as a function of several explanatory variables. In this lab you will learn 

how to use linear regression tools in SPSS to obtain the estimated regression equation and make inferences 

associated with regression analysis. You will also study variable selection techniques, regression diagnostic 

tools and case-influence statistics. We will omit or spend relatively little time on those SPSS linear 

regression tools that are natural extensions of the tools employed for simple linear regression model and 

were already discussed  in Lab 3 Instructions. 
 

We will demonstrate multiple linear regression tools in SPSS using a simple example with three 

explanatory variables. 

 

Example: A survey was carried out to study television viewing habits among senior citizens. Twenty-five 

subjects over the age of 65 were sampled and the following variables were recorded:  

 

Column    Variable Name Description of Variable 

 

1                TV average number of hours per day that the subject watches television, 

2     MARRIED  marital status, (1 if living with a spouse, 0 otherwise); 

3     AGE   age of subject in years, 

4     EDUC  number of years of formal education. 

 

The data are saved in SPSS file tv.sav and can be downloaded by clicking the link below: 

 

DOWNLOAD DATA 

 

We will use the data to examine the relationship between the average number of hours per day spent 

watching television (response variable) and the marriage status (living with a spouse or not), age, and 

education. 

 

 1.  Multiple Linear Regression Model 

 

In multiple regression model there is a single response variable and several explanatory variables and we 

are interested in the distribution of the response variable as a function of explanatory variables.  

 

In our example TV is the response Assume that the relationship between the response variable TV and each 

of the three explanatory variables MARRIED, AGE, and EDUC is linear. We would like to determine how 

the number of hours spent watching television is affected by the subjects’ age, marital status, and 

education.  

 

Define a multiple regression as follows: 

 

0 1 2 3 .TV MARRIED AGE EDUC ERROR         

 

We assume here that the variable ERROR follows a normal distribution for each combination of values of 

the explanatory variables and the mean of ERROR is zero. Moreover, we assume that the variance of the 

ERROR variable is constant for each combination of values of the explanatory variables. 

 

The above model can be equivalently rewritten as 

 

0 1 2 3( | , , ) .TV MARRIED AGE EDUC MARRIED AGE EDUC         

http://www.stat.ualberta.ca/statslabs/stat337/files/tv.sav
http://www.stat.ualberta.ca/statslabs/stat337/files/tv.sav
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2.  Matrix of Scatterplots 

 

Before you apply the regression tool in SPSS for your data, you must make sure that the explanatory 

variables are linearly related to the response variable. If they are not, you may have to transform the 

original data. For example, you may have to apply log or square root transformation to make the 

relationship approximately linear.  

 

Scatterplots are very useful in visualizing the relationship between the response variable and a single 

explanatory variable. However, it is much harder to display the relationship among the response variable 

and several explanatory variables in multiple regression problems. 

 

A matrix of scatterplots is an array of scatterplots displaying all possible pairwise combinations of the 

response and explanatory variables. The number of rows and columns in the matrix is equal to the number 

of all variables in the model (with the response variable included) and the scatterplot of one variable versus 

another is at the intersection of the appropriate column and the row in the matrix. Briefly, scatterplot matrix 

is a matrix whose elements are scatterplots of each pair of variables. The scatterplot may be useful to 

evaluate the strength of the relationship between the response variable and each of several explanatory 

variables, its direction and to bring your attention to unusual observations.  

 

Obtaining a matrix of scatterplots is usually the first step in examining the relationships among several 

variables in multiple regression problems. However, it is important to realize that though simple 

scatterplots are very useful in exploring the relationship between a response and a single explanatory 

variable in simple regression problems, matrix of scatterplots is not always effective in revealing the 

complex relationships among the variables or detecting unusual observations in multiple regression 

problems. 

 

To illustrate the above concepts we will obtain a matrix of scatterplots for our data. To access the Matrix of 

Scatterplots feature in SPSS, select Scatter/Dot option in the Graphs menu. It opens the Scatter /Dot dialog 

box shown below. 

 

 
 

Click the Matrix Scatter icon and then the Define button. You will obtain Scatterplot Matrix dialog box 

displayed on the next page.  

 

Select and move all variables, including the response (TV) and three predictors (MARRIED, AGE and 

EDUC) into the Matrix Variables box. Put the response variable on the top of the list to make sure that the 

variable will appear on the vertical axis in the first row of the matrix of scatterplots. Then click OK.  
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The matrix of scatterplots will be displayed in Output View window. 
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Notice that the matrix of scatterplots consists of 12 smaller plots describing 6 different relationships. The 

first row shows the relationship between TV with each of the three predictors (MARRIED, AGE and EDUC) 

respectively. Notice that the above matrix of scatterplots is symmetric; the upper right triangle contains the 

same plots that the lower left one but with axes reversed. This provides a different perspective and may be 

useful in evaluating the pattern in the plots.  

 

First we evaluate the relationship between the response variable TV and each of the three explanatory 

variables, MARRIED, AGE, and EDUC. There is a negative linear relationship between TV and EDUC. The 

linear relationship between TV and EDUC is strong; the one outlier at the left bottom of the plot makes the 

relationship weaker. The scatterplot matrix also shows a moderate tendency for the number of TV hours to 

increase as age of the subject increases (a positive relationship); the pattern is disturbed by a few points at 

the right bottom of the plot. MARRIED is in fact a categorical variable with only two possible values (0 or 

1), and therefore the relationship between marital status and number of hours spent watching TV can be 

displayed better with other displays (for example, boxplots). Nevertheless, the scatterplot of TV versus 

MARRIED shows that singles tend to spend more time watching television than subjects living with a 

spouse. Notice also a considerably smaller spread for the TV values for singles than that one for married 

people. 

 

Now we comment about the relationship between pairs of explanatory variables. Scatterplots of one 

explanatory variable versus another explanatory variable may be useful in detecting possible 

multicollinearity (when the variables are highly correlated). There is a moderate negative linear relationship 

between age and education. 

 

 

3.  Matrix of Correlations 

 

In this section you will learn how to measure the association between interval variables (their values 

represent ordered categories, so that distance comparisons or ratios are appropriate; for example, income or 

age) or ordinal variables (their values represent only order or ranking; for example, levels of satisfaction).  

 

3.1 Bivariate Correlations 

 

First we will discuss here bivariate correlation (i.e. dealing with the relationship between two variables 

regardless of the influence of other variables). When you want to control for the effect of a third variable, 

you need to apply partial correlation. The Bivariate Correlations procedure in SPSS computes the pairwise 

associations for a set of variables and displays the results in a matrix. 

 

Click Analyze in the main menu and then Correlate from the pull-down menu, and finally Bivariate… 

 

 
 

javascript:void(0)
javascript:void(0)
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The Bivariate Correlations dialog box is displayed on the next page. In the Bivariate Correlations dialog 

box, select two or more variables and move them into Variables list. This produces a matrix of correlation 

coefficients for all pairs of the selected variables.  

 

  
 

The Correlation Coefficients group consists of three check boxes: Pearson, Kendall’s tau-b, and Spearman. 

The Pearson correlation coefficient is appropriate for interval variables, while the Kendall and Spearman 

coefficients can be obtained for variables measured on ordinal scale. The Pearson correlation describes the 

strength of the linear association between two interval variables. Spearman correlation is simple the 

Pearson correlation when the data values are replaced by their ranks. Pearson is the default option in the 

Bivariate Correlations dialog box. 

 

Once you've computed a correlation coefficient, you would like to know how likely the observed 

correlation has occurred by chance i.e. the observed value of the sample correlation coefficient is the result 

of sampling error. Indeed, if an outcome could have occurred by chance with considerable probability, this 

outcome would not be considered trustworthy. The probability that the observed outcome occurred by 

chance (p-value) is also produced by the feature. In the Test of Significance group you may select either 

two-tailed or one-tailed tests of statistical significance of the observed correlation. A one-tailed test is 

needed, if we assume that the relationship between two variables has a certain direction. If you have no 

prior expectation regarding a positive or negative association between the two variables, you should use a 

two-tailed test. By default, SPSS performs a two-tailed test. 

 

SPSS marks all significant correlations. If you leave the Flag significant correlations check box selected 

(default option), correlations significant at the 0.05 level are marked with an asterisk, and those significant 

at the 0.01 level with two asterisks.  

 

The Bivariate Correlations procedure has some additional features. If you click the Options button, you can 

request some additional statistics or specify how the missing data are to be treated. The optional statistics 

are means and standard deviations displayed for the variables in the correlation matrix.  
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Now we obtain the matrix of correlations for our data. Select and move all three interval variables TV, 

AGE, and EDUC into Variables box. Make sure that the Pearson and Flag significant correlations boxes 

are checked. Click OK to run the procedure. The matrix of correlations is shown below. 

 

 
 

The Pearson correlation coefficient indicates the direction and strength of the relationship between two 

variables. Correlation coefficients range from –1 to 1, where 1 or -1 is a perfect correlation (straight-line 

relationship) and 0 is no correlation. A negative coefficient means that one variable tends to increase as the 

other decreases. A positive coefficient means that both variables tend to increase or decrease together.  

 

The signs and magnitudes of the correlation coefficients in our case, confirm the conclusions based on the 

examination of the matrix of scatterplots in Section 1. For example, there is a significant correlation (-

0.634) exists between the response variable (TV) and the variable EDUC. The correlation between TV and 

AGE is weak and not significant. 
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3.2 Partial Correlations 

 

Bivariate correlation analysis provides information about the strength and direction of the linear 

relationship between two variables. Sometimes, however, the relationship between two variables is 

obscured by the influence of a third variable. The partial correlation coefficient is the correlation between 

two variables when the linear effects of other variables are removed. With the option Partial Correlations 

you can investigate the true relationship between two variables controlling for the effects of other variables. 

 

Click Analyze in the main menu and then Correlate from the pull-down menu, and finally Partial…. 

 

 
 

The following dialog box opens. 

 

 
 

You need to specify the variables whose relationships you want to evaluate and the variable(s) you want to 

control. For instance, the matrix of correlations in Section 3.1 shows that the correlation coefficient 

between the number of hours spent watching television (TV) and age (Age) is not significant (p-value = 

0.200). Nevertheless, it is possible that older people may spend more time watching television due to their 

restricted mobility. Therefore the relationship between TV and Age may be masked by the influence of a 

third variable, for example mobility score. Here mobility is a fictitious variable that can be added to the 

data file. 

 

To determine the true strength of the relationship between TV and Age (not affected by the third variable, 

mobility score), we obtain the partial correlation coefficient between TV and Age.  

 

The dialog box of the Partial Correlations procedure requesting for the correlation between TV and Age 

when controlling for the effect of the third fictional variable (mobility, not included in the actual data file) 

is shown below: 
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Suppose the output of the Partial Correlations procedure is as follows: 

 

 
 

The bivariate correlation coefficient between TV and Age was 0.200 (see the correlation table in Section 

3.1) and has now increased to 0.489. The correlation between TV and Age is now significant, with a 

significance level of 0.015. Se we indeed find evidence that older people spend significantly more time 

watching television. 

 

 

4. Multiple Linear Regression in SPSS 

 

Multiple regression is a natural extension of simple linear regression model discussed in Lab 3 Instructions. 

In this section we will discuss the Linear Regression tool in SPSS in more detail. We will demonstrate how 

to build a linear regression model that has more than one explanatory variable and how to interpret the 

corresponding SPSS output.  

Click Regression in the Analyze menu, then on Linear. 
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Move the response variable TV into the Dependent list and the explanatory variables MARRIED, AGE and 

EDUC into the Independent(s) list. Click OK. This produces the basic regression output shown below. 
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The basic output of Linear Regression in SPSS consists of the following four components: an overview of 

the variables included in the regression model (Variables Entered/Removed), the overall results of the 

regression analysis (Model Summary), the F test for the estimated model (ANOVA) and an overview of the 

estimated regression coefficients and the corresponding statistics (Coefficients). 

 

4.1 Multiple Regression Basic Output Interpretation 

 

Now we will discuss in detail all components of the SPSS output obtained above.  

 

(a) Variables Entered/Removed 

 

 
 

 

Model: SPSS allows you to specify multiple models in a single regression command.  This column 

specifies the number of the model being reported in the output. 

 

Variables Entered: SPSS allows you to enter the explanatory variables in blocks, and you can specify 

different entry methods for different blocks of variables (Enter, Stepwise, Backward,…). For example, you 

can enter one block of variables into the regression model using stepwise selection and a second block 

using forward selection. 
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If you did not block your explanatory variables or use stepwise regression, this column should list all of the 

explanatory variables that you specified. In case of our data, the table lists all explanatory variables in the 

model: MARRIED, AGE and EDUC.  

 
Variables Removed: This column listed the variables that were removed from the current regression.  This 

column is empty in our case (Enter method). 

 
Method: Method selection allows you to specify how explanatory variables are entered into the model. 

Using different methods, you can construct various regression models from the same set of variables. The 

methods will be discussed in detail later. 

(b) Model Summary 

In the standard form (with the default options: Estimates and Model fit checked in Linear Regression: 

Statistics dialog box) the Model Summary produces four values: the value of the multiple correlation 

coefficient R, the coefficient of determination R², Adjusted R², and Standard Error of the Estimate. 

 

The Model Summary produces four values: the value of the multiple correlation coefficient R, the 

coefficient of determination R², Adjusted R², and Standard Error of the Estimate. 

R (multiple correlation coefficient) is the correlation between the observed values and the predicted values. 

It is used in multiple regression analysis to assess the quality of the prediction of the response variable in 

terms of the explanatory variables. The value of R ranges from 0 to 1. The higher the value of R, the better 

the predictive power of the regression model. The value of R for our data is 0.737.  

R Square is the squared multiple correlation coefficient. It is also called the coefficient of determination. 

R² is the ratio of the sum of squares of residuals due to regression to the total sum of squares for the 

regression model. R
2 

indicates what proportion of the variation in the response variable is explained by the 

explanatory variables. If all cases are exactly on the regression line (the residuals are all zero), R
2 

equals 1. 

If R
2 

is zero, the model has no predictive capability (this does not automatically mean that there is no 

relationship between the response and explanatory variables. It only means that no linear relationship 

exists). The higher the value of the coefficient of determination, the better predictions can be obtained with 

the regression model. The R
2 

value in our example is 0.543 which means that 54.3% of the variation in TV 

is explained by the three explanatory variables. That high percentage makes the model really useful. 

 

Adjusted R Square is a modified measure of the coefficient of determination that takes into account the 

sample size and the number of explanatory variables in the model. The rationale for this statistic is that, if 

the number of explanatory variables is large relative to the sample size, the unadjusted R
2 

value may be 

unrealistically high (the addition of explanatory variables will always cause the R
2 

value to rise, even if the 

variables have no real predictive capability). However, when variables are added to the model, adjusted R² 

doesn't increase unless the new variables have additional predictive capability; adjusted R² may even fall if 

the added explanatory variables have no explanatory power and are statistically insignificant. The statistic 

is quite useful to compare regression models with different numbers of explanatory variables. Data sets 
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with a small sample size and a large number of predictors will have a greater difference between the 

obtained and adjusted R square. The adjusted R² for our data is 0.478 and it is smaller than unadjusted R² 

value. 

 

The Standard Error of the Estimate is an estimate of the standard deviation σ of the ERROR term in the 

regression model. The standard error of the estimate is a measure of the accuracy of predictions made with 

the regression model; the smaller the standard error of estimate, the better the prediction. It is obtained as 

the square root of the Residual Mean Square (sum of squares of residuals divided by their respective 

degrees of freedom). 

 

Now we will discuss the Model Summary output when additionally to the default options (Estimates and 

Model fit) the R squared change and Descriptives boxes are also checked in Linear Regression: Statistics 

dialog box. If R squared change option is selected the following columns are added to the standard output: 

 

 
 

The extra columns display R
2
 and F change and the corresponding significance level. R

2
 change refers to 

the amount R
2
 increases or decreases when a variable is added to or deleted from the equation as is done in 

stepwise regression or if the explanatory variables are entered in blocks. If R
2
 change associated with a 

specific explanatory variable is large, that means that the variable is a good predictor of the response 

variable. If the "Enter" method is used to enter all explanatory variables at once in a single model, R
2
 

change for that model will reflect change from the intercept-only model.  
 

In the above output, R
2
 change is the same as R

2
 because the variables were entered at the same time (not 

stepwise or in blocks); there is only one regression model to report, and R
2
 change is change from the 

intercept-only model, which is also what R
2
 is. R

2 
change is tested by F test. 

 

If the Descriptives option is selected, then the mean and the standard deviation for each variable in the 

analysis and the correlation matrix are also displayed. If the Durbin-Watson box is checked, the results of 

the Durbin-Watson test for serial correlation of the residuals are provided. The Durbin Watson test is of 

particular importance for data collected over time. 

  
(c)  The Analysis of Variance Table 

 

The third block of the regression output contains the results of the analysis of variance. 
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The analysis of variance table is used to test the null hypothesis that all of the population regression 

coefficients, with the exception of the intercept, are equal to zero (equivalently, there is no linear 

relationship in the between the response variable and the explanatory variables). In other words, this 

hypothesis states that none of the considered explanatory variables is useful in explaining the response. The 

F test is used to test the hypothesis; this test is often called the F-test for overall significance of the 

regression.  

 

Now we will discuss all columns in the above ANOVA output in detail. In testing the null hypothesis, the 

total variation of the response variable is divided into two components. One part of the variation is 

explained by the explanatory variables in the regression model, while the other part is not explained, which 

is the residual. Analysis of variance compares the explained variation, which SPSS labels as “Regression”, 

with the unexplained variation, called “Residual”. 

 

The second column in the ANOVA output displays the sums of squares (Sum of Squares) for the two 

components (the regression equation and the residual) and also their total. The following column contains 

the degrees of freedom (df). For the regression model these equal the number of explanatory variables, 

k=three in our example. The number of degrees of freedom for the residual is equal to the number of cases 

(n=25) minus the number of explanatory variables minus 1 (n-k-1= 25-3-1=21).  

 

The following column contains mean sum of squares for the regression model and the residual (Mean 

Square).The mean sum of squares is obtained by dividing the sum of squares by the corresponding degrees 

of freedom. The square root of the Mean Square for the residual component is equal to the standard error of 

the estimate discussed above. In our example, based on the Model Summary part of the output the standard 

error of the estimate is 0.8719 and indeed it is equal to the square root of the mean square for the residual of 

0.760 (any discrepancy is due to rounding). 

 

The final two columns show the results of the F-test. The F-value is obtained as the ratio of the mean sums 

of squares of the regression model and the residual. In our example, the F value equals 6.325/0.760=8.321. 

SPSS also displays the level of significance of the F test and the degrees of freedom. Under the null 

hypothesis, the F statistic follows an F distribution with the degrees of freedom for the numerator equal to 

the number of explanatory variables (k) and the number of degrees of freedom for the denominator equal to 

the number of cases minus the number of explanatory variables minus 1.  In our example, F statistic 

follows an F distribution with 3 degrees of freedom for the numerator and 21 degrees of freedom for the 

denominator. The p-value reported by SPSS is 0.001. Using the threshold value of α=0.05, we reject the 

null hypothesis that all regression coefficients are zero. In other words, al least one regression coefficient 

significantly differs from zero; the regression model is useful. 

 

(d)  Coefficients 

 

The Coefficients table follows the ANOVA output.  
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In the standard form (with the default options: Estimates and Model fit checked in Linear Regression: 

Statistics dialog box) the table contains the estimates of the population regression coefficients, their 

standard errors, the standardized coefficients and the values of the t statistics to test the regression 

coefficients with the corresponding two-sided p-values. 

 

This first column Model shows the number of the model being reported (1) and the predictor variables 

(Constant, Married, Age, Education).  The first variable (Constant) represents the constant, also referred to 

in the text as the y intercept, the height of the regression line when it crosses the Y axis.   

 

The column B contains the coefficients for the regression equation for predicting the response variable 

from the explanatory variables and the values of the other explanatory variables do not change. Thus, the 

estimated regression equation is 

 

( ) 2.443 1.078 0.017 0.103 .TV MARRIED AGE EDUC         

 

The interpretation of the coefficient of an explanatory variable in a regression model depends on what other 

explanatory variables are included in the model. A regression coefficient indicates the number of units of 

change (increase or decrease) in the response variable caused by an increase of one unit in the explanatory 

variable (with the constant values of the other variables). A positive coefficient means that the predicted 

value of the response variable increases when the value of the explanatory variable increases. A negative 

coefficient means that the predicted value of the response variable decreases when the value of the 

explanatory variable increases. Thus according to the above equation, married seniors watch on average 

1.078 hours less television per day than not married people with the constant values of the other variables. 

 

The regression coefficient does not reflect the relative importance of a variable because the magnitude of 

the coefficients depends on the units used for measuring the variables. The regression coefficients reflect 

the relative importance of the variables only if all explanatory variables are measured in the same units. In 

order to make meaningful comparisons among the regression coefficients, SPSS also displays the 

coefficients that would be obtained if the variables were standardized before the regression analysis. These 

regression coefficients, shown as Standardized Coefficients-Beta, reflect the relative importance of the 

explanatory variables. To compare the relative importance of two variables, you have to use the absolute 

values of the beta coefficients.  

 

The last two columns t and Sig. display the results of the t-test of the regression coefficients. In this test, the 

null hypothesis states that a regression coefficient is zero. The alternative hypothesis states that a regression 

coefficient differs from zero. The value of the t statistic for a regression coefficient is displayed in the 

column t. This value is obtained by dividing the estimated regression coefficient in the B column by the 

corresponding standard error. The standard error is found in the output under Std. Error. The last column of 

the table contains two-tailed p-value for the computed t value. If the p-value is smaller than α=0.05, the 

coefficient is significantly different from 0. 

 

The p-value of the t test for an explanatory variable must also be interpreted in terms of other variables 

included in the model. Therefore the variable MARRIED is significant (p-value of 0.021) given the other 

variables in the model. 

 

The coefficient for AGE (0.017) is not significantly different from 0 using alpha of 0.05 because its p-value 

is 0.641, which is larger than 0.05. 

 

95% confidence intervals for each regression coefficient will also be displayed if the Confidence intervals 

box is checked in Linear Regression: Statistics dialog box. They are very useful as help you understand 

how high and how low the actual values of the population parameters might be.  The confidence intervals 

are related to the p-values such that the coefficient will not be statistically significant if the confidence 

interval includes 0. 
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 (e) Collinearity Diagnostics 

 

Multicollinearity is a situation in which two or more explanatory variables in a multiple regression model 

are highly correlated. When correlation is excessive, standard errors of the estimated regression coefficients 

become large, making it difficult or impossible to assess the relative importance of the predictor variables. 

Multicollinearity is a matter of degree: there is no irrefutable test that it is or it is not a problem. 

Nevertheless, there exist diagnostic tools to detect excessive multicollinearity in the regression model.  

 

Multicollinearity does not diminish the predictive power of the regression model; it only affects 

calculations regarding individual explanatory variables. A natural solution to this problem is to remove 

some variables from the model. When two explanatory variables are involved, multicollinearity is called 

collinearity (means that strong correlation exists between them). 

 

In order to obtain an extensive collinearity statistics (tolerance, VIF, regression coefficient variance-

decomposition matrix), make sure that the Collinearity diagnostics box is checked in Linear Regression: 

Statistics dialog box. 

 

 
 

The first table in the output displays two collinearity measures, the tolerance and the VIF. To determine the 

tolerance, SPSS computes the R
2 

of the regression model in which one of the explanatory variables is 

treated as the response variable and is explained by the other explanatory variables. The bigger R
2
 is (i.e. 

the more highly the explanatory variable is with the other explanatory variables in the model), the bigger 

the standard error will be. In consequence, confidence intervals for the coefficients tend to be very wide 

and t-statistics tend to be very small.  

 

http://en.wikipedia.org/wiki/Multiple_regression
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The tolerance equals one minus this R
2 

expressing that fraction of the variation of an explanatory variable 

that is not explained by the other explanatory variables. Since tolerance is a proportion, its values range 

from 0 to 1. A value close to 1 indicates that an explanatory variable has little of its variability explained by 

the other explanatory variables. A value of tolerance close to 0 indicates that a variable is almost a linear 

combination of the other explanatory variables. If any of the tolerances are small (less than 0.10), 

multicollinearity may be a problem. 

 

The VIF (Variance Inflation Factor) is the reciprocal of the tolerance (i.e. 1 divided by the tolerance). A 

rule of thumb often used is that VIF values greater than 10 signal multicollinearity. 

 

If multicollinearity is a problem in your data, you may find that although you can reject the null hypothesis 

that all population coefficients are 0 based on the F statistic, none of the individual coefficients in the 

model is significantly different from 0 based on the t statistic. The collinearity diagnostics output for our 

data is shown below.  

 

 
 

As none of the tolerance values the table above is smaller than 0.10, there is no evidence of 

multicollinearity in our data based on the tolerance values alone. 

 

 The Collinearity Diagnostics table in SPSS is an alternative method of assessing if there is too much 

multicollinearity in the model. In particular, condition indices are used to flag excessive collinearity in the 

data. A condition index over 30 may suggest serious collinearity problems and an index over 15 may 

indicate possible collinearity problems. 

 

If a component (dimension) has a high condition index, one looks in the variance proportions column. If 

two or more variables have a variance proportion of .50 or higher on a factor with a high condition index, 

these variables have high linear dependence and multicollinearity is a problem, with the effect that small 

data changes or arithmetic errors may translate into very large changes or errors in the regression analysis.  

 

Note that it is possible for the rule of thumb for condition indices (index over 30) to indicate 

multicollinearity (variance proportions ignored), even when the rules of thumb for tolerance > .10 suggest 

no multicollinearity. In our data, one of the condition indices is 42.213 (over 30), but the variance 

proportions as well the tolerance values do not indicate multicollinearity. 
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4.2 Building Regression Models 

 

A common problem in regression analysis is that there are many variables that can be potentially good 

predictors of the response variable and that you have to determine how many, and which of those variables 

have to be included in the final regression model. The final model should provide the best possible 

explanation of the response variable and also be easy to interpret. 

 

From an interpretation point of view, a regression model with as few as possible explanatory variables is 

preferred. On the other hand, a regression model with the highest value of R
2 

provides the best possible 

explanation of the response variable. When more explanatory variables are added to the model, the R
2 

value 

tends to increase. In an extreme situation you obtain a model that gives an excellent explanation of the 

response variable, but which contains so many explanatory variables that the interpretation becomes very 

difficult. Therefore, we have to find a balance between the ease of interpretation and the predictive power 

of the model. 

 

One possible way of finding this balance is to include in the final model only those variables whose 

estimated regression coefficients are significant. A variant of this is not to include all variables in the model 

straight away, but to include them one by one. A new variable will be added to the model when the change 

in the R
2 

value is sufficiently large to make the addition justified. Another opposite approach is to start with 

a model containing all possible variables and then decide which variables can be left out without 

substantially affecting the value of R
2
. Selecting the explanatory variable requires a criterion to determine 

whether the change in the R
2 

resulting from adding or removing a variable is significant. The F test is used 

for this purpose. The value of F is computed as the change in the R
2 
value relative to R

2
. 

 

SPSS has two statistics that can be used as threshold values, both for adding and removing variables from 

the model. For adding (removing) variables: 

 

(a) The probability of F to enter (remove) is the maximum acceptable level of significance. If the 

 computed p-value is lower (higher) than the entered value, the variable is added (removed); 

 otherwise it is not.  

 

(b) The F to enter (remove) is the minimum F value. If the computed F is higher (lower) than this 

 value, the variable is added (removed); otherwise it is not. 

 

The two criteria can lead to different results because the degrees of freedom depend upon the number of 

variables in the model.  
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The button Options (see the picture above) in Linear Regression dialog box allows you to specify whether 

SPSS is to use the significance level or the F value as the criterion and change the default threshold values. 

 

SPSS contains five methods that determine which independent variables are included in the regression 

model: Enter, Forward, Backward, Stepwise and Remove.  

 

1. The Enter method: The model is obtained with all specified variables. This is the default method. 

 

2. The Forward method: The variables are added to the model one by one if they meet the criterion for 

entry (a maximum significance level or a minimum F value).  SPSS starts with the variable that has the 

largest correlation with the response variable. If this variable meets the criterion for entry, a regression 

analysis is performed with only this variable. Then SPSS determines which of the variables not yet 

included has the strongest partial correlation with the response variable. If this variable also meets the 

criterion for entry, it is included into the regression equation as the second variable. This process is 

continued until a variable no longer satisfies the criterion for entry or all variables have been included. 

 

3. The Backward method: The variables are removed from the model one by one if the meet the criterion 

for removal (a maximum significance level or a minimum F value). SPSS starts with a model 

containing all explanatory variables. Next it finds the variable with the smallest partial correlation with 

the response variable and determines whether the variable meets the criterion for removal. If that is the 

case, this variable is removed and a new model is estimated. This process is continued until a variable 

no longer satisfies the criterion for removal or all variables have been removed. 

 

4.  The Stepwise method: This method is a combination of Forward and Backward. The variables are 

added in the same way as in Forward method. The difference with the Forward method is that when 

variables are added, the variables already in the model are also assessed based on the criterion for 

removal, as for Backward method. In order to prevent the same variable being alternately added or 

removed, make sure that the Probability of F to remove is always higher than the Probability of F to 

enter (or the F to remove is lower than F to enter). 

 

5. The Remove method: Remove can be used when you have specified the explanatory variables in 

blocks (buttons Previous and Next in Linear Regression dialog box). All variables belonging to the 

same block are removed from the model in one step. 

 

To illustrate the above methods, we will apply some of them to our data in Section 4.4 

 

 

4.3 Multiple Regression Diagnostics 

 

The linear regression model is valid under the assumption of a linear relationship between the response 

variable and each explanatory variable and the ERROR variable following a normal distribution for each 

combination of values of the independent variables with the mean zero. Moreover, we assume that the 

variance of the ERROR variable is constant for each combination of values of the explanatory variables. 

 

The above assumptions can be tested by an examination of the residuals as they should reflect the 

properties assumed for the unknown ERROR term. The residuals are expected to follow a normal 

distribution with the mean 0.  

 

We used residual plots to check the regression model assumptions for a simple linear regression. However, 

there are more plots to be examined in a multiple linear regression. Residuals can be plotted against each 

explanatory variable, against the predicted values for the response variable, and against the order in which 

the observations were obtained (if suitable). Often, the residuals in the plot are standardized by dividing 

each one by the standard deviation of the residuals. 

 

The following diagnostic tools can be used to test the validity of the assumptions: 
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1. Linearity: The plot of residuals versus predicted values and versus explanatory variables.  If the model 

is correct, there should be no pattern in these plots.  Transformations of one or more of the variables 

can be tried (logarithm or square root) or polynomial terms (e.g., squares) of one or more of the 

variables can be added to try to remedy nonlinearity. 

 

2. Constant Variance: The plot of residuals versus predicted values and versus explanatory variables.  A 

pattern in the spread of the residuals (e.g., fan or funnel pattern) indicates nonconstant variance. If the 

assumption is satisfied, most of the residuals should fall in a horizontal band around 0. The spread of 

points should be approximately the same across all the predicted or explanatory variable values. 

Transformations of the response variable can be tried to correct nonconstant variance. 

 

3. Normality: Normal probability plot (Q-Q plot of residuals; if the residuals come from a normal 

population, the points in the plot should fall close to a straight line) or histogram of the residuals (it 

should be approximately bell shaped).  

 

4. Independence: Plot the residuals versus the time order of the observations.  If the observations are 

independent, there should be no pattern in the plot over time.    
 

The plot of standardized residuals versus standardized predicted values and normal probability plot of 

residuals can be obtained in SPSS by clicking the button Plots in Linear Regression dialog box and filling 

out Linear Regression: Plots dialog box as follows: 

 

 
 

Outliers in regression are observations with residuals of large magnitude (in absolute value), i.e., 

observation’s y value is unusual given its explanatory variable values. Least squares regression is not 

resistant to outliers. One or two observations with large residuals can strongly influence the analysis and 

may significantly change the answers to the questions of interest.  

 

An observation is influential if removing it markedly changes the estimated coefficients of the regression 

model. An outlier may be an influential observation. 

 

To identify outliers and/or influential observations, the following three case statistics can be calculated: 

studentized residual, leverage value, and Cook’s distance.  

 

1.   Studentized Residuals: A studentized residual is a residual divided by its estimated standard deviation. 

Studentized residuals are used for flagging outliers. A case may be considered an outlier if the absolute 

value of its studentized residual exceeds 2. 
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2.   Leverage Values: They are used for finding cases with unusual explanatory variable values: If the 

leverage for an observation is larger than 2p/n, then the observation has a high potential for influence, 

where p is the number of regression coefficients and n is the number of data in the study. 

 

 In general, an observation that has high leverage and of a large studentized residual will often be 

influential.  Cook’s Distance can be used to find observations that are influential.  

 

3. Cook’s Distances: They are used for flagging influential cases: If Cook’s distance is close to or larger 

than 1, the case may be considered influential. 

 

These three case-influence statistics: leverage values, studentized residuals and Cook’s distance, can be 

requested in your regression analysis in SPSS by clicking on the Save button in Linear Regression dialog 

box.  By identifying potentially influential cases, we can refit the model with and without the flagged cases 

to see whether the answers to the questions of interest change. 

 

 

4.4 Applications: Example Data 

 

Now we will use the backward elimination procedure to obtain the estimated linear regression model for 

our data and identify the possible influential cases. 

 

Select the Analyze option in the main menu bar, then click on Regression from the pull-down menu, and 

finally on Linear. This opens Linear Regression dialog box. Select and move the variable TV into the 

Dependent box and the three explanatory variables (MARRIED, AGE and EDUC) into the Independent(s) 

box. Then click the Method button and select Backward. To identify the influential cases, click the Save 

button in Linear Regression dialog box and check the Cook’s, Leverage values, and Studentized boxes in 

Linear Regression: Save dialog box. 

 

To check the model assumptions, we will obtain the normal probability plot of residuals and a plot of 

standardized residuals versus standardized predicted values. Click the Plots button in Linear Regression 

dialog box. It opens Linear Regression: Plots dialog box. Check the Normal probability plot box and 

specify the type of residual plot. Click Continue to close the dialog box and then click OK to run the 

procedure. 

 

The outputs are shown below. 

 

Variables Entered/Removedb

EDUC,

AGE,

MARRIED
a

. Enter

. AGE

Backward

(criterion:

Probabilit

y  of

F-to-remo

ve >= .

100).

Model
1

2

Variables

Entered

Variables

Removed Method

All requested v ariables entered.a. 

Dependent  Variable: TVb. 

 
 

The table above shows that variable AGE has been eliminated by the backward elimination procedure. Only 

the two variables are included in the final model: EDUC and MARRIED. 
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Model Summaryc

.737a .543 .478 .87187

.734b .538 .496 .85635

Model
1

2

R R Square

Adjusted

R Square

Std.  Error of

the Est imate

Predictors: (Constant), EDUC, AGE, MARRIEDa. 

Predictors: (Constant), EDUC, MARRIEDb. 

Dependent Variable:  TVc. 

 
 

The R square value for the final model is 53.8%. It means that 53.8% of the variation in TV is explained by 

the two explanatory variables MARRIED and EDUC in the fitted regression model. 

 

We define the regression model with the two explanatory variables as follows: 

0 1 2( )TV MARRIED EDUC       

 

Then the null and alternative hypotheses to test the overall significance of the model are 

 

0 1 2: 0H     vs. 1 2: 0 or 0aH    . 

 

ANOVAc

18.975 3 6.325 8.321 .001a

15.963 21 .760

34.938 24

18.805 2 9.403 12.822 .000b

16.133 22 .733

34.938 24

Regression

Residual

Total

Regression

Residual

Total

Model

1

2

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), EDUC, AGE, MARRIEDa. 

Predictors: (Constant), EDUC, MARRIEDb. 

Dependent Variable: TVc. 

 
 

According to the ANOVA table above, the test statistic F follows the F-distribution with 2 degrees for 

numerator and 22 degrees for the denominator. The value of F = 12.822 and the corresponding p-value is 

reported as zero. This provides very strong evidence against the null hypothesis. Thus the regression model 

is highly significant. 
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Coefficientsa

2.443 2.904 .841 .410

-1.078 .433 -.452 -2.487 .021

.017 .036 .084 .473 .641

-.103 .054 -.383 -1.915 .069

3.803 .392 9.705 .000

-.998 .392 -.419 -2.544 .018

-.116 .044 -.435 -2.637 .015

(Constant)

MARRIED

AGE

EDUC

(Constant)

MARRIED

EDUC

Model

1

2

B Std.  Error

Unstandardized

Coeff icients

Beta

Standardized

Coeff icients

t Sig.

Dependent Variable: TVa. 

 
 

According to the Coefficients table above, the estimated regression equation is 

 

( ) 3.803 0.998 0.116TV MARRIED EDUC       

 

In order to see how significantly each explanatory variable contributes individually given the other 

variables in the model, we define the null and alternative hypotheses as follows: 

 

0 : 0 vs. : 0 , 1,2i a iH H i     

 

The p-values for the MARRIED are reported as 0.018 and the p-value for the EDUC is reported as 0.015. 

Thus each of the two variables is very significant in predicting TV given the other variable in the model. 

 

The normal probability plot of standardized residuals is displayed below: 

 

1.00.80.60.40.20.0

Observed Cum Prob

1.0

0.8
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0.4

0.2

0.0
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u
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Dependent Variable: TV

Normal P-P Plot of Regression Standardized Residual
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The above plot indicates some slight but not serious departures from the normality assumption. In general, 

regression models are quite robust for slight departures from the assumption of normality for residuals. 

 

The plot of standardized residuals versus standardized predicted values is shown below.  

 

10-1-2

Regression Standardized Predicted Value

2

1
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-1
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l

4

Dependent Variable: TV

Scatterplot

 
 

 

The pattern in the plot causes some concern, because the spread of residuals indicates that the assumption 

of equal variance may be violated. As a consequence, the inferences based on the model including tests and 

confidence intervals can be invalid.  

 

There is an outlier, which is case #4. This case refers to a senior whose values of TV (0), AGE (90) and 

EDUCATION (2) are unusual relative to the other subjects in the sample.   
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The case #4 has a relatively high studentized residual of -3.66 (<-2), large Cook’s distance of 2.18 (>1), 

and high leverage value of 0.29 (>23/25=0.24). Therefore, the case #4 may be considered an outlier (high 

studentized residual) and has high potential to be an influential case. 

 

In order to see whether the case is indeed influential, let us remove the case, and rerun the regression. This 

time, we will try the forward selection procedure. You will see that indeed excluding the case 4 will change 

substantially the estimates and inferences. Regression outputs are shown below. 
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Variables Entered/Removeda

EDUC .

Forward

(Criterion:

Probabilit

y -of -

F-to-enter

<= .050)

AGE .

Forward

(Criterion:

Probabilit

y -of -

F-to-enter

<= .050)

Model

1

2

Variables

Entered

Variables

Removed Method

Dependent Variable: TVa. 

 
 

 

 

Model Summary

.882a .779 .768 .54392

.919b .844 .829 .46755

Model

1

2

R R Square

Adjusted

R Square

Std.  Error of

the Est imate

Predictors: (Constant), EDUCa. 

Predictors: (Constant), EDUC, AGEb. 

 
 

ANOVAc

22.881 1 22.881 77.341 .000a

6.509 22 .296

29.390 23

24.799 2 12.399 56.722 .000b

4.591 21 .219

29.390 23

Regression

Residual

Total

Regression

Residual

Total

Model

1

2

Sum of

Squares df Mean Square F Sig.

Predictors: (Constant), EDUCa. 

Predictors: (Constant), EDUC, AGEb. 

Dependent Variable: TVc. 

 
 

 

 

The following 

predictors are added 

to the model: EDUC 

and then AGE. 

R square has increased to 0.844 after removing 

the influential case. 

Overall, the final model is significant 

with F2,21 = 56.722 and P value = 0. 
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Coefficientsa

4.553 .268 16.965 .000

-.229 .026 -.882 -8.794 .000

-.020 1.561 -.013 .990

-.207 .024 -.797 -8.764 .000

.059 .020 .269 2.962 .007

(Constant)

EDUC

(Constant)

EDUC

AGE

Model

1

2

B Std.  Error

Unstandardized

Coeff icients

Beta

Standardized

Coeff icients

t Sig.

Dependent Variable: TVa. 

 
 

 

According to the Coefficients table above, the estimated regression equation is 

 

( ) 0.02 0.207 0.059TV EDUC AGE        

 

The p-value for the EDUC is reported as 0.00 and the p-value for the AGE is reported as 0.007. Thus each 

of the two variables is very significant in predicting the response variable TV given the other variable in the 

model. 

 

The normality plot of residuals and the plot of standardized residuals versus standardized predicted values 

should be obtained to verify the model assumptions.  
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