SEX DISCRIMINATION PROBLEM

9. The Effect of Outliers on the Inferences

In Section 4 we found that there is only one outlier in our data, the salary of a male making \$8,100. What is the effect of the observation on the t-test and confidence intervals discussed in the previous section? In order to answer the question, we will carry out the statistical analysis with and without the outlying observation.

Variable	Number of Cases	Mean	SD	SE of Mean
BSAL				
Females	61	5138.8525	539.871	69.123
Males	31	5887.7419	578.773	103.951
Mean Differe Levene's Tes	ence = -748.8895 at for Equality of Vari	ances: F= .045	P= .832	
Mean Differe Levene's Tes t-test for Eq Variances	ence = -748.8895 at for Equality of Vari uality of Means t-value df	ances: F= .045 2-Tail Sig	P= .832 SE of Diff	95%CI for Diff
Mean Differe Levene's Tes t-test for Eq Variances	ence = -748.8895 at for Equality of Vari uality of Means t-value df	ances: F= .045 2-Tail Sig	P= .832 SE of Diff	95%CI for Diff

First we will carry out the test for the whole three-year period.

As you see, the value of the t-statistic has changed slightly. It was -6.29, it is -6.14 without the outlying observation. The p-value of the test remains the same, zero. In fact, the p-value has changed too, but it is still so small that is rounded to zero. However, the 95% confidence interval for the mean has changed more significantly, it was (-1076.25, -559.799) before, it is now (-991.278, -506.501).

The outlying observation \$8,100 was obtained in the first year of the study data. Thus we will also carry out the test for the time period.

Variable	Num	ber of Cases	Mean	SD	SE of Mean
BSAL					
Females		20	5350.500	0 437.162	97.752
		~	(200.000		100 -0-
Males Mean Diff Levene's To t-test for F	erence = - est for Equ Equality of	5 949.5000 nality of Varia	6300.000) 424.264 4 P= .698	
Males Mean Diff Levene's Te t-test for F Variances	erence = - est for Equ Equality of t-value	5 949.5000 ality of Varia f Means df 2-Ta	6300.000) 424.264 64 P= .698 of Diff	95% CI for Diff
Males Mean Diff Levene's To t-test for F Variances Equal	erence = - est for Equ Equality of t-value -4.37	5 949.5000 ality of Varia f Means df 2-Ta 23 .000	• • • • • • • • • • • • • • • • • • •) 424.264 4 P= .698 of Diff 7.473	95% CI for Diff (-1399.38, -499.623

The p-value of the t-test remains the same (zero), but the 95% confidence interval has changed significantly. The confidence interval with the outlier was (-1766.23, -751.039), without the outlier is (-1399.38, -499.623).