SEX DISCRIMINATION PROBLEM

8. Tests of Significance and Confidence Intervals

First we will apply the independent samples t-test for the male and female observations in the three-year period. SPSS produces the following output:

	Number of C				
BSAL					
Females	61		5138.8525	539.871	69.123
Males	32		5956.8750	690.733	122.106
	ence = -818.0225 st for Equality of V	Variances: F	= .344 P= .5:	59	
Levene's Te	st for Equality of V	Variances: F	= .344 P= .5:	59	
Levene's Ter t-test for Eq					• CI for Diff
Levene's Ter t-test for Eq Variances	st for Equality of V Juality of Means	2-Tail Sig	SE of Diff	95%	

The output starts with statistics of the two groups, followed by the value of the difference between means. The Levene test for equality of variances is also included. Provided the F value is not significant (P>0.05), the variances can be assumed to be equal and the Equal Variances line of values for the t-test can be used. If P<0.05, then the equality of variances assumption has been violated and the t-test based on unequal variances should be used.

In our case, the high P-value of 0.559 in the Levene's Test for equality of variances strongly indicates that the sample data are consistent with the equality variances assumption. The P-value of the two-sided t-test for the equality of means is obtained by SPSS as zero. Hence, one-sided p-value is zero as well. That means that there is a very strong evidence that the population mean starting salaries are higher for males. The mean starting salary for males is estimated to be \$559.80 to \$1076.25 larger than the mean starting salary for females.

Now we will carry tests of significance to compare the average starting salaries of males and females for each of the three one-year periods. This approach is reflecting changes in mean starting salary over the three-year period.

Seniority t	oetween 65	and 76	(Year 1)			
Variable	N	umber	of Cases	Mean	SD	SE of Mean
BSAL						
Females Males		22 6		5341.3636 6600.0000		
	erence = -1 est for Equ			F= 3.138 P= .0	88	
t-test for E	equality of	Means				
Variances	t-value	df 2	e	SE of Diff		

Variable	Number of Cases		SD	SE of Mea
BSAL				
Females	23	5272.1739	468.721	97.735
Males	16	5790.0000	548.161	137.040

t-test for Equality of Means

Variances	t-value	e df	2-Tail Sig	SE of Diff	95% CI for Diff
Equal	-3.17	37	.003	163.567	(-849.244, -186.409)
Unequal	-3.08	29.02	.005	168.322	(-862.072, -173.580)

Seniority be	etween 89	and 100 ((Year 3)				
Variable							SE of Mear
BSAL							
F 1		16	4668	7500	500.185	1	25.046
Females		10	1000	.,200	500.105		
Males Mean Differ	ence = -11	10 69.2500	5838	.0000	649.338	2	205.339
Males Mean Differ Levene's Tes t-test for Eq	ence = -11 st for Equa quality of I	10 69.2500 lity of Var Means	5838. riances: F	.0000 = .623	649.338 P= .438		205.339
Males Mean Differ Levene's Tes	ence = -11 st for Equa quality of I t-value	10 69.2500 lity of Var Means df 2-	5838. riances: F -Tail Sig	.0000 = .623 SE of	649.338 P= .438	95% (205.339 CI for Diff

As you can see, the p-values of the t-test for equality of means are extremely small or reported as zero. That indicates strong evidence against the null hypothesis that the population means are equal in each of the three time periods. All the p-values reported above are obtained for two-sided alternatives. Remember that the p-value for one-sided alternative (the mean for males is higher) can be obtained by dividing the p-value for the two-sided alternative by two.