
CLOUD SEEDING EXPERIMENT

6. Displaying a Multiplicative Treatment Effect

We will use the data to examine the nature of the relationship between seeded and
unseeded rainfalls. The bolded hyperlinks displayed below lead directly to the 
corresponding topics. 

6.1 Is the effect of seeding multiplicative or additive? Simple Simulations.
6.2 Determining the nature of the treatment effect by comparing the

boxplots for the seeded and unseeded groups on the log scale.
6.3 What do the normal Q-Q plots of seeded and unseeded rainfalls say

about the nature of the effect of seeding?

6.1 Is the treatment effect additive or multiplicative? We will demonstrate how the
boxplot for the seeded days would look like if the treatment effect were additive
or multiplicative. You will be able to determine the nature of the effect in the real
data by comparing the boxplots with the boxplot for the seeded days.

We will create first a variable containing the rainfall amounts for only the
unseeded days. Then we create four new variables by adding 100, 200, 300, and
400 to each of unseeded day rainfall amounts. We will use SPSS to display a set
of five boxplots  to illustrate what one might expect if the effect of seeding were
additive.
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Adding the same amount to each of the unseeded day rainfall amounts does not
affect the shape of the distribution. This is why the boxplots obtained by adding
100, 200, 300, and 400 can be obtained by shifting the boxplot for unseeded days
by 100, 200, 300, and 400 units up, respectively. Adding a constant to all of the



observations changes the location of the distribution but leaves the spread
unaltered.

None of the four boxplots (Plus100, Plus200, Plus300, and Plus400) is similar to
the boxplot for seeded days (see 4.1). The boxplot for the seeded days indicates
that the distribution for seeded days is almost symmetrical and it has a larger
spread than the distribution for unseeded days. This is indicated by the position of
the line within the box (median) and by the length of the box (interquartile range).
The above boxplots do not support the additive effect.

Now we will repeat the procedure assuming multiplicative effect. Let us create
four additional variables by multiplying each of the unseeded day rainfall
amounts by 1.5, by 2.0, by 2.5, and by 3. We will use SPSS to display a set of five
boxplots  to illustrate what one might expect if the effect of seeding were
multiplicative.
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Multiplicative Changes to the Unseeded Distribution
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Observe that the distributions obtained by multiplying each of the unseeded day
rainfall amounts by 1.5, by 2.0, by 2.5, and by 3 have larger spread and are less
skewed than the distribution of rainfalls for the unseeded days. The boxplot
Times3.0 resembles the boxplot for the seeded days. We can conclude that the
experiment supports the multiplicative effect.

6.2 The comparison of the boxplots for seeded and unseeded clouds can also give
some insight in the nature of the seeding effect in the experiment. In Section 4.2
we obtained the following side-by-side boxplots of log-transformed observations
for the two treatment groups.
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BOXPLOTS OF RAINFALL ON LOGARITHMIC SCALE
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As you can see, the distributions have approximately the same shape and spread.
The appearance of the boxplot for seeded rainfalls suggests that it might be
obtained by shifting the boxplot for unseeded rainfalls by a specific number of
units up. It looks as if  the seeding added the same rainfall amount to any cloud
rainfall. Therefore, the additive treatment effect holds for the log-transformed
data, and that translates into the multiplicative treatment effect on the original
scale of measurement.

6.3 The Normal Q-Q plot plots the quantiles of a variable's distribution against the
quantiles of the normal distribution. If the data come from a normal distribution,
the plot should resemble a straight line. Normal Q-Q plots are generally used to
determine whether or not a variable is normally distributed.

In our case study we will use the plot not only to check the normality assumption
for each distribution but also to examine the nature of the relationship between the
two distributions. We will carry out our analysis on the log scale for both
distributions.

What could be expected if the effect of seeding were multiplicative? In order to
answer the question, notice that if the values of one variable are the multiples of
the values of the other variable, then their logarithms differ by a constant. Thus if
you consider the quantiles of both distributions, they differ by a constant.
Graphically, that means that the normal Q-Q plots for both distributions are
approximately parallel. Thus we can use SPSS to obtain both plots and compare
them to verify the hypothesized multiplicative treatment effect.

Another possible method to verify the multiplicative effect would be to obtain the
quantile-quantile plot of seeded cloud rainfall versus control cloud rainfall. If the
shift of the points in the plot from the line y=x could be described by a parallel
line, the plot lends support to the multiplicative assumptions.



We will use the first approach and SPSS to support the hypothesis of the
multiplicative effect. In order to achieve this, we will obtain the normal Q-Q plots
for the unseeded and seeded days. Remember that the unseeded days are coded as
1 and seeded days are coded as 2.

Normal Q-Q Plot of RAIN
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Normal Q-Q Plot of RAIN

CODE:         2.00

The Rainfalls for Seeded Days
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In each case the natural logarithms of data values were used instead of the original
values themselves. Each of the above normal plots resembles a straight line and
hence it supports the assumption of normality of the transformed observations.

The fact that the slopes of both lines are approximately equal supports the
hypothesis that the effect of seeding is multiplicative.


