
CLOUD SEEDING EXPERIMENT 
      
 

14. Brief Version of the Case Study 
 
14.1 Problem Formulation 
 

The problem is based on the data from the Cloud Seeding to Increase Rainfall 
experiment discussed in your textbook, pages 54-55. This data are also available 
in the Excel file Case0301.xls located on the FTP server. 

 
The experimental data are the result of a series of weather modification 
experiments conducted in south Florida from 1968 to 1972. These experiments 
were designed to test a hypothesis that massive injection of silver iodide into 
cumulus clouds can, under specified conditions, lead to cumulus growth, thereby 
increased precipitation. On each of 52 days that were deemed suitable for cloud 
seeding, a random mechanism was used to decide whether to seed the target cloud 
on that day or to leave it unseeded as a control. An airplane flew through the 
cloud in both cases, since the experimenters and the pilot were themselves 
unaware of whether on any particular day the seeding mechanism in the plane was 
loaded or not. Precipitation was measured as the total rain volume falling from the 
cloud base following the airplane seeding run, as measured by radar. 

 
The following is a description of the variables in the data file: 

 
Column Name of Variable  Description of Variable 

 
1 RAIN   Total rain volume (acre-feet) 
2 CODE   1 for unseeded days, 2 for seeded 

days. 
 

 
We will use SPSS to answer the following two questions using the data: 

 
1. Did cloud seeding have an effect on rainfall in this experiment? 
 
2. If cloud seeding did have an effect on rainfall, estimate the effect in terms 

of how many times the volume of rainfall produced by a seeded cloud is 
larger than the volume that would have been produced in the absence of 
seeding.  

 
 

14.2 Data Collection and Study Design 
 

The goal of the experiment is to establish the cause-and-effect relationship 
between cloud seeding and precipitation. However, the conclusions we are going 
to reach about the relationship do not depend on the data only, but also on the 
experiment design and the way the data were collected.  

 



The observed response variable in the case study is the total rain volume falling 
from cloud base. This variable was measured by unique modified radar. The 
research gave some indication that the radar was in fact underestimating rainfall.  
Thus, the results of the case study about the effect of seeding on rainfall would be 
stronger rather than weaker if the errors of the rainfall evaluations could have 
been avoided.  

 
Let us analyze now the way the experiment was conducted. In any experiment it 
is necessary to define the experimental unit upon which a treatment may be 
applied and the appropriate measurement is to be taken. 

 
The experimental units in the cloud seeding experiment are isolated cumulus 
clouds in south Florida on a day that was deemed suitable for seeding.  

 
The aircraft surveyed the experimental area for clouds that might meet some 
preset conditions. These conditions intended to make the units as homogeneous as 
possible. Then the researchers selected one of suitable clouds. The random 
mechanism was not used in the phase. 

 
Once the target cloud was determined, a random mechanism was used to decide 
whether to seed the cloud on that day or to leave it unseeded as a control. The fact 
that the experiment was blind, that is the airplane crew was unaware of whether 
seeding was conducted or not, prevented the intentional or unintentional biases of 
the investigators from having a chance to make a difference in the results. 

 
Thus the experiment is an example of a randomized experiment because the 
investigators controlled the assignment of experimental units (suitable clouds) to 
groups (seeded, unseeded) and used a chance mechanism to make the assignment. 
This study design enables us to draw causal inferences.  

 
The clouds (experimental units) subjected to the treatment (seeding) or left as a 
control are not members of any well-defined population. Hence, the observed 
pattern cannot be inferred to hold in some general population.  

 
 
14.3 Displaying and Describing Seeded and Unseeded Rainfalls 
 

First we will obtain the boxplots of the rainfall amounts on the acre-feet scale for 
seeded and unseeded days. SPSS produces the following side-by-side boxplots 
rainfall amount on the acre-feet scale: 
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The boxplot for unseeded days is highly skewed to the right. It indicates that most 
of the time the rainfall volume from unseeded clouds is very small or zero. 
However, there are outliers and extreme observations in the distribution. The 
spread of rainfall amount is relatively small. The boxplot for seeded days is 
slightly skewed to the right. There is one outlier and three extreme observations in 
the distribution. The spread of rainfall amount is relatively large. 
 
The side-by-side boxplots indicate that the rainfall tended to be larger on the 
seeded days. Both distributions are quite skewed, and more variability occurred in 
the seeded group than in the control group. 
 
Now we will use SPSS to display and compare the distributions of the natural 
logarithm of rainfall for seeded and unseeded days.  
 

2626N =

BOXPLOTS OF RAINFALL ON LOGARITHMIC SCALE
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The positions of the quartiles and whiskers indicate that on the logarithmic scale, 
both distributions are approximately symmetric, and have approximately the same 
spread. The boxplots confirm the conclusion we have reached before that the 
rainfall tended to be larger on the seeded days. 
 

14.4 Describing Seeded and Unseeded Rainfalls 
 

We will describe the data by obtaining the basic measures of center, spread, and 
shape for the distributions of rainfalls for unseeded and seeded days. The Explore 
command in SPSS produces the summary statistics for both distributions.  
 

RAINFALLS  STATISTICS 
UNSEEDED SEEDED 

MEAN 164.5885 441.9846 
MEDIAN 44.2000 221.6000 

5% TRIMMED MEAN 120.7350 351.7201 

MEASURES  
OF CENTER 

95% CI FOR MEAN (52.1296, 277.0473) (179.1260, 704.8433) 
STANDARD DEV. 278.4264 650.7872 

STANDARD ERROR 54.6039 127.6299 
VARIANCE 77521.26 423524.0 

IQR 159.6000 365.3250 
MINIMUM 1.0000 4.1000 
MAXIMUM 1202.600 2745.600 

MEASURES  
OF SPREAD 

RANGE 1201.600 2741.500 
SKEWNESS 2.7892 2.4352 

ST. ERROR SKEWNESS 0.4556 0.4556 
KURTOSIS 8.1731 6.0084 

MEASURES  
OF SHAPE 

ST. ERROR KURTOSIS 0.8865 0.8865 

COUNT  26 26 

 
The above numerical results confirm our conclusions reached in the previous 
section about the graphical displays for the data. All displayed measures of center 
indicate that the typical rainfall on the seeded days exceeds significantly the 
rainfall on the unseeded days. The measures of spread show that the spread of 
rainfall amounts is much larger on the seeded days. The distribution of rainfall 
amounts is more skewed on the unseeded days. 

 
14.5 Displaying a Multiplicative Treatment Effect 
 

The comparison of the boxplots for seeded and unseeded clouds can also give 
some insight in the nature of the seeding effect in the experiment. In Section 14.3 
we obtained the following side-by-side boxplots of log-transformed observations 
for the two treatment groups. 
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As you can see, the distributions have approximately the same shape and spread.  
The appearance of the boxplot for seeded rainfalls suggests that it might be 
obtained by shifting the boxplot for unseeded rainfalls by a specific number of 
units up. It looks as if  the seeding added the same rainfall amount to any cloud 
rainfall. Therefore, the additive treatment effect holds for the log-transformed 
data, and that translates into the multiplicative treatment effect on the original 
scale of measurement. 

 
14.6 Making Inferences 
 

Any inferences in this case should be stated in terms of treatment effects and 
causation, rather than differences in population means and association. In 
particular, we will test a null hypothesis of no seeding effect and obtain a 
confidence interval for the seeding effect. 

 
In order to see whether there is a treatment effect, we will use the t-test for two-
sample problems in the way it would be used for a random sampling situation. 
The statistic can be accessed in SPSS by using The Independent-Samples T Test 
command. The procedure compares the means of one variable (rainfall amount) 
for two treatment groups (seeded, unseeded).  

 
The assumptions of the t-tools (test and confidence interval) in the randomized 
experiment are that both treatment groups are independent of one another, and the 
treatment distributions are normal. 

 
The design of the experiment does not provide any evidence that the 
independence assumption is violated. Is there any evidence that the assumption of 
normality is violated? The boxplots displayed in Section 14.3 indicate that the 
data for both distributions are skewed. Thus the assumption of normality is not 
justified. However, both distributions displayed on the logarithmic scale in 
Section 14.3 are approximately symmetric. Therefore, any inferences should be 
made after taking the logarithms of the rainfalls.  

 



In order to determine whether or not a variable is normally distributed, you can 
use one of the two available procedures in SPSS: Normal Q-Q Plot or Normal P-P 
Plot. The Normal Q-Q plot plots the quantiles of a variable's distribution against 
the quantiles of the normal distribution. If the data come from a normal 
distribution, the plot should resemble a straight line.  

 
The normal probability plot (Normal Q-Q plot) for each treatment group is 
displayed below. Remember that the unseeded days are coded as 1 and seeded 
days are coded as 2. 
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Normal Q-Q Plot of RAIN

CODE:         2.00

The Rainfalls for Seeded Days
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In each case the natural logarithms of data values were used instead of the original 
values themselves. Each of the above normal plots resembles a straight line and 
hence it supports the assumption of normality of the transformed observations.  
 



The data do not provide any evidence that any of the assumptions necessary to 
apply the t-tools might be violated. Even if one of the assumptions is violated 
slightly, the robustness of the t-tools makes it possible to apply them in this case. 

 
 
14.7 Test of Significance and Confidence Interval 
 

SPSS produces the following output: 

 
t-tests for Independent Samples  
                            
 Variable            Number  of Cases       Mean        SD     SE of Mean 
 -------------------------------------------------------------------------------------------------- 
 RAINFALL 
 
 Unseeded                 26         3.9904     1.642       0.322 
 Seeded                     26         5.1342     1.600       0.314 
 -------------------------------------------------------------------------------------------------- 
 
 Mean Difference = -1.1438 
 
 Levene's Test for Equality of Variances: F= .058  P= .811 
 
 
 t-test for Equality of Means  
                                        
 Variances    t-value        df     2-Tail Sig     SE of Diff      95% CI for Diff 
 -------------------------------------------------------------------------------------------------- 
 Equal           -2.54        50          .014        .450       (-2.047, -.241) 
 Unequal        -2.54     49.97     .014         .450      (-2047, -.241) 
 -------------------------------------------------------------------------------------------------- 

 
We test the null hypothesis that there is no seeding effect for the log-transformed 
observations (treatment effect is zero). In other words, we test the claim that there 
is no effect of cloud seeding on log rainfall.  

 
A suitable tool to test the hypothesis of no treatment effect is the two-sample t-
statistic. The Independent-Samples T Test procedure available in SPSS compares 
the additive effect of cloud seeding on the log rainfall. Denote by δ the additive 
effect of cloud seeding on the logarithm of rainfall. Thus the null and alternative 
hypotheses are 
 
H0 : δ= 0 (no additive effect of cloud seeding on the log rainfall), 
 
Ha : δ> 0 (evidence of additive effect of cloud seeding on the log rainfall). 
 
 
 
 
 



The value δ̂  defined as the difference between the average rainfall for unseeded 

clouds and the average rainfall for seeded clouds is an estimate δ̂  of δ. The t 
statistic under the null hypothesis has the form  
 

ˆ ˆ 0
ˆ ˆ( ) ( )

t
SE SE

δ δ δ
δ δ

− −= = . 

 
The P-value of the two-sided t-test with the assumption of equal variances is 
obtained by SPSS as 0.014. Hence, one-sided p-value is 0.014/2 = 0.007. That 
means that there is convincing evidence to reject the null hypothesis of no effect 
of cloud seeding on log rainfall. The data support the claim that seeding causes 
the increase in rainfall.  

 
The 95% confidence interval for the difference between the logarithms for seeded 
and unseeded rainfalls is 0.241 to 2.047. 

 
We have applied the t-tools on the log scale because the log-transformed rainfalls 
have distributions that appear satisfactory for using the tools. Now we will 
transform our estimates back to the original scale. 

 
According to the above output, the average seeded log rainfall minus the average 
unseeded log rainfall is 1.1438. The logarithm transformation enables us to obtain 
an estimate of the multiplicative effect of cloud seeding on rainfall.  

 
In general, if Y1, Y2 are the responses to treatments 1 and 2, and 21, ZZ are the 
observed averages for the two treatments, then  

 

)exp( 12 ZZ −    estimates   
( 2)

.
( 1)

response treatment

response treatment
 

 
In other words, the value of )exp( 12 ZZ −  estimates how many times the response 
to treatment 2 is as large as the response to treatment 1. For details see your 
textbook, page 67-68. 

 
In our case, the difference between the average rainfalls for seeded and unseeded 
clouds is 12 ZZ −  = 1.1438, and therefore exp(1.1438)=3.1384 is an estimate of 
the ratio of the responses. Thus the volume of rainfall produced by a seeded cloud 
is estimated to be 3.14 times as large as the volume that would have been 
produced in the absence of seeding. 

 
The 95% confidence interval for the multiplicative treatment effect on the original 
scale is exp(0.241)=1.2720 to exp(2.047)=7.7425. Thus the treatment effect is 
estimated to be between 1.27 and 7.74 times. 
 
 
 
 
 
 



14.8 Summary 
 

The boxplots of the rainfalls for seeded and unseeded days reveal that the two 
distributions of rainfall are skewed. As the t-tools require the normality 
assumption be satisfied, they cannot be used on the original scale of measurement. 
However, the boxplots of the log-transformed data display symmetric 
distributions for seeded and unseeded days.  

 
The comparison of the boxplots for seeded and unseeded observations for the log-
transformed data reveals an additive treatment effect. The additive treatment 
effect for the log-transformed data can be converted into a multiplicative 
treatment effect for the data on the original scale of measurement. We estimated 
that the rainfall is 3.1 times as much when a cloud is seeded as when it is left 
unseeded. 

 
The two-sample t-test can be used as an approximation to the randomization test. 
The null hypothesis about no additive treatment effect on the log scale can be 
back-transformed into the hypothesis about no multiplicative treatment effect for 
rainfalls on the original scale. The 95% confidence interval for the multiplicative 
treatment effect on the original scale is 1.2720 to 7.7425. Thus the treatment 
effect is estimated to be between 1.27 and 7.74 times. 
 
The case study is an example of a randomized experiment. We used a random 
mechanism to decide whether to seed the target cloud on a given day or to leave it 
unseeded as a control. However, the clouds (experimental units) subjected to the 
treatment (seeding) were not selected from any well-defined population.  

 
As the clouds were randomly allocated to the two treatment groups (seeded and 
unseeded), cause-and-effect conclusions can be drawn regarding the effect on the 
particular clouds selected. However, the observed pattern cannot be inferred to 
hold in some general population.  

 


