BREAKDOWN TIMES

8. One-Way Analysis of Variance Model

The simple linear regression model allows us to produce some estimates of the mean breakdown time at each voltage level. The model is based on the assumption that the logbreakdown time means lie on a straight line against voltage. If this is not the case, an analysis of variance can be used.

In this section we will apply the analysis of variance to our experiment. The separate means model (one-way ANOVA) applied to our experiment has the form

```
\mu{Ln(Time) |Voltage_i} = \mu_i
```

for i=26, 28, ..., 38, where μ_i denotes the mean of the group subjected to the voltage of i kV. This model is obviously more general than the simple regression model because the log-breakdown time means may or may not lie on the straight line -their values are not restricted.

The following display contains the output of the one-way analysis of variance applied to the log-transformed breakdown times.

		Analysis of Variance					
Source		D.F.	Sum of Squares	Mean Squares	F Rati	0	F Prob.
Between Groups		6	196.4774	32.7462	13.004	3	.0000
Within Groups		69	173.7489	2.5181			
Total	1	75	370.2263				
			Standard	Standar	d		
Group	Count	Mean	Standard Deviation	Standar Error	d 95% Con	f Int	er for Mo
Group 26 kV	Count 3	Mean 5.6240	Deviation		-	f Int TO	
•			Deviation 3.3552	Error	95% Con		
26 kV	3	5.6240	Deviation 3.3552 1.1446	Error 1.9371	95% Con -2.7109	ТО	13.958
26 kV 28 kV	3 5	5.6240 5.3295	Deviation 3.3552 1.1446 1.1112	Error 1.9371 .5119	95% Con -2.7109 3.9084	TO TO	13.958 6.750
26 kV 28 kV 30 kV	3 5 11	5.6240 5.3295 3.8220	Deviation 3.3552 1.1446 1.1112 2.1981	Error 1.9371 .5119 .3350	95% Con -2.7109 3.9084 3.0755	TO TO TO	13.958 6.750 4.568
26 kV 28 kV 30 kV 32 kV	3 5 11 15	5.6240 5.3295 3.8220 2.2285	Deviation 3.3552 1.1446 1.1112 2.1981 1.5252	Error 1.9371 .5119 .3350 .5675	95% Con -2.7109 3.9084 3.0755 1.0113	TO TO TO TO	13.958 6.750 4.568 3.445
26 kV 28 kV 30 kV 32 kV 34 kV	3 5 11 15 19	5.6240 5.3295 3.8220 2.2285 1.7864	Deviation 3.3552 1.1446 1.1112 2.1981 1.5252	Error 1.9371 .5119 .3350 .5675 .3499	95% Con -2.7109 3.9084 3.0755 1.0113 1.0513	TO TO TO TO TO	13.9 6.7 4.5 3.4 2.5

We remember that if the log-transformed data have a symmetric distribution, then taking the antilogarithm of the mean on the log scale gives an estimate of the median on the original scale. Hence, in order to obtain the estimates of the group medians on the original scale of measurement, you have to take the antilogarithm of the above group means.

The analysis of variance F-statistic is F=13.0043, with 6 and 69 degrees of freedom, giving a reported p-value of 0. The p-value indicates strong evidence against the null hypothesis of no difference among the average log-breakdown times for the seven groups. In other words, there is strong evidence of differences among the group medians on the original scale of measurement.

The way the experiment was conducted makes it possible to infer that the different voltage levels must be directly responsible for the observed differences in time to breakdown.

The within-group mean square is 2.5181, so the pooled estimate of a common standard deviation is the square root of the value, which is equal to 1.586852 minutes.

The estimated means in the model for each voltage level are simply the group averages. The standard errors displayed above are based on the individual standard deviations for each group, not the pooled standard errors. In order to obtain the pooled standard errors of the means, which is the one-way analysis of variance standard error, we divide the pooled estimate of standard deviation (1.586852) by the square root of the sample size.

The quality of estimated means in the insulating fluid problem from the separate-means model and the simple linear regression model is discussed in **Section 10**.