
BLOOD-BRAIN BARRIER EXPERIMENT

9. Diagnostics

In Section 8, we applied a linear regression model to our data by treating sacrifice time as
a factor with four levels and treatment as a factor with two levels. We incorporated the
two factors in the model by using three dummy variables to represent four levels of
sacrifice time factor, and one dummy variable to represent two levels of the treatment
factor. The multiple linear regression model had the form
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where D3, D24, D72, and TREAT are the dummy variables used to represent four levels
of sacrifice time and two levels of treatment. We have found before that the covariates
are not significant when the design variables, treatment and sacrifice time, are also
included in the model.

The random variable ERROR is assumed to follow a normal distribution with the mean of
zero and an unknown standard deviation �. The standard deviation is constant at all
levels of the response variable LNRATIO.

In this section various diagnostic tools will be used to evaluate the adequacy of the
regression model.

In order to see whether the assumption of constant variance is not violated, we plot
residuals (standardized residuals) against the fitted and also against each predictor
variable. If the assumptions of linearity and constant variance appear to be met, then
these residual plots should exhibit a random scatter of points with similar spread across
all levels of fitted and independent variable values.

The plot displayed below shows the scatterplot of standardized residuals against the
corresponding fitted values. No obvious difficulties are revealed in this display. With the
exception of the smallest fitted values, the variability appears to be quite similar across
all levels of fitted values. A random pattern is apparent in the plot, the linearity
assumption is not violated.

The plot displayed below shows the scatterplot of standardized residuals against the
corresponding fitted values. There are some difficulties revealed in this display. The
variability of the residuals appears to be uneven across all levels of fitted values. More
precisely, the spread of residuals appears to increase when the magnitude of the fitted
values increases.

The effect is made even stronger by the presence of the observation 34 that lies far below
the main body of the data. As the change in spread refers to a relatively small fraction of
observations, it is difficult to make strong claims with respect to non-constant variability.



The plot shows residuals falling randomly, with no strong tendency to be either greater or
less than zero.

The case 34 is an outlier, and its potential to influence the position of the regression line
will be discussed later.

The next two plots, a histogram and a normal p-p plot of the standardized residuals, are
used to check whether the assumption of normality of residuals is plausible for the data.
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As you can see, the standardized residuals follow approximately a normal distribution,
although there is some slight skewness in the data.

SPSS also provides a normal plot of standardized residuals to verify the assumption of
normality.

The plot displays some skewness in the data. However, most points in the plot are lying
close to a straight line. Taking into account a relatively small number of observations,
there is no sufficient evidence that the normality assumption is seriously violated.

Now we discuss the collinearity and multicollinearity.

It is well known that collinearity and multicollinearity can have harmful effects on
multiple regression, both in the interpretation of the results and in how they are obtained.
In particular, collinearity affects parameter estimates and their standard errors, and
consequently t ratios. Inflated standard errors mean wider confidence intervals for the
regression coefficients and a diminished ability of tests to find significant results.

Two measures for assessing both pairwise and multiple variable collinearity available in
SPSS are the tolerance and the variance inflation factor (VIF). Tolerance is the amount
of variability of the selected independent variable not explained by the other independent
variables. It is obtained by making each independent variable a dependent variable and
regressing it against the remaining independent variables. Tolerance values approaching
zero indicate that the variable is highly collinear with the other predictor variables. The
variance inflation factor (VIF) is inversely related to the tolerance value:

./1 TOLERANCEVIF �  Large VIF values (a usual threshold is 10.0, which corresponds
to a tolerance of .10) indicate a high degree of collinearity or multicollinearity among the
independent variables.
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SPSS provides the collinearity statistics for each variable when requested. The statistics
for our data is displayed below:

No VIF value exceeds 10.0, and the tolerance values show that collinearity does not
explain more than 10 percent of any independent variable's variance.  There is no
evidence of a significant collinearity in the problem.

SPSS regression collinearity diagnostics includes also the condition indices and the
regression coefficient variance-decomposition matrix. A large condition index (over 30)
indicates a high degree of collinearity. The regression coefficient variance-decomposition
matrix shows the proportion of variance for each regression coefficient (and its associated
variable) attributable to each condition index.

In order to examine collinearity, we first identify all condition indices above the threshold
value of 30. Then for all condition indices exceeding the threshold, we identify variables
with variance proportions above 0.90. A collinearity problem is indicated when a
condition index identified as above the threshold value accounts for a substantial
proportion of variance (.90 or above) for two or more coefficients. Thus each row in the
matrix with the proportions exceeding 0.90 for at least two coefficients indicates
significant correlations among the corresponding variables.

The collinearity diagnostics table for the brain-barrier data is displayed below:

Coefficients a
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(Constant)

D3

D24

D72

TREAT

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.
Lower
Bound

Upper
Bound

95% Confidence Interval
for B

Tolerance VIF

Collinearity Statistics

Dependent Variable: LNRATIOa. 

Collinearity Diagnostics a

2.437 1.000 .03 .02 .02 .02 .06

1.001 1.560 .00 .33 .09 .09 .00

1.000 1.561 .00 .00 .26 .26 .00

.439 2.357 .02 .09 .13 .13 .75

.123 4.455 .95 .55 .49 .49 .19

Dimension
1

2

3

4

5

Model
1

Eigenvalue
Condition

Index (Constant) D3 D24 D72 TREAT

Variance Proportions

Dependent Variable: LNRATIOa. 



As you can see, none of the condition indices exceeds the threshold value of 30. Thus, we
can find no support for the existence of multicollinearity.

Now we consider diagnostics for outliers and influential cases. An outlier is not
necessarily an influential point, nor do all influential points have to be outliers. Thus,
different statistical tools are used to identify outliers and influential observations.
Studentized residuals are used for flagging outliers, and leverages and Cook's distances
for flagging influential cases.

A studentized residual is a residual divided by its estimated standard deviation. The
standardization makes the residuals directly comparable (larger predicted values have
larger residuals). The studentized residual is the primary indicator of an observation that
is an outlier on the dependent variable. With a fairly large sample size (50 or above), we
may use a rule of thumb that studentized residuals smaller than -2 or larger than 2 are
substantial. Observations falling outside the range can be considered potential outliers.

Instead of using cutoffs based on distributional assumptions, many researchers plot the
standardized residuals, looking for points that stand apart from the others.

The following plot is a plot of standardized residuals versus case number for the brain-
barrier data.

Only one observation, the case 34 stands apart from the others. SPSS provides the
statistics for the case.
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The standardized residual for the case is -3.266, and thus the observation can be treated
as an outlier. Its potential to influence the position of the regression line will be discussed
below.

The leverage of a case is a measure of the distance between its explanatory variable
values and the average of the explanatory variable values in the entire data set. This
observation has substantial impact on the regression results due to its differences from
other observations. Leverages are greater than 1/n and less than 1, and the average of all
leverages in a data set is always p/n, where p is the number of regression variables. While
a large leverage does not necessarily indicate that the case is influential, it does imply that
the case has a high potential for influence. Statisticians use (2*p)/n as a lower cutoff point
for flagging potential influential cases (if p>10 and n>50), (3*p)/n otherwise. Instead of
using cutoffs, many researchers are looking for points that stand apart from the others.

In the blood-brain barrier problem, the threshold leverage value is (3*4)/34=0.353. All
leverage values lie below the threshold value.

In order to get some overall assessment of influence and see whether the case 34 is
indeed influential, we will look at some other case influence statistics. One of these
statistics is the Cook's distance.

Cook's Distance measures overall influence of a single case on the estimated regression
coefficients when the case is deleted from the estimation process. Large values (usually
greater than 1) indicate substantial influence by the case in affecting the estimated
regression coefficients. However, even if no observations exceed this threshold,
additional attention is dictated if a small set of observations has substantially higher
values than the rest.

The values of Cook's distances are provided by an SPSS output when requested.
Although the value of Cook's Distance for case 34 is equal to 0.46152, which is smaller
than 1, it is obviously substantially larger than the rest. Therefore, it is worthy to rerun
the regression without the case to see its influence on the regression results.

Running multiple regression without the case changes the coefficient of determination (it
is equal to .972 without the case and .951 for all observations), the estimate of standard
error (0.5328 without the case, and 0.4074 for all observations), and the coefficients of
the regression equation. The regression equation without the case is

.234.4675.72404.524250.43121.1}{ ��������� TREATDDDLNRATIO�

Notice that the estimate of the multiplicative effect of the diffusion treatment has changed
from exp(0.797) = 2.22 to exp(0.675) = 1.964. We can treat the case 34 as an influential
observation.


