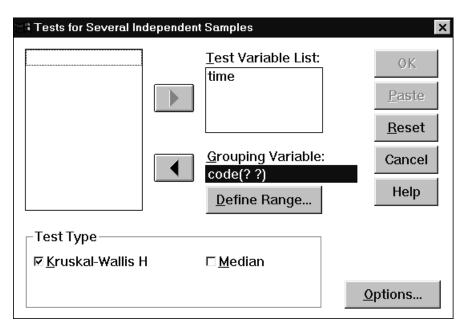
FAILURE TIMES OF BEARINGS


12. Using Nonparametric Methods

The F-test presented in Section 6 has the underlying assumptions of normality and equal variances. However, the graphical displays of the data in Section 3 indicate that the assumptions might be violated. Moreover, the data provided consist of a relatively small number of observations, ten in each group. Under these circumstances, the Kruskal-Wallis test provides a very good alternative to the F-test.

The Kruskal-Wallis one-way ANOVA can be found in the *K Independent Samples*... item of the *Nonparametric Tests* menu.

<u>S</u>	tatistics <u>G</u> raphs	<u>U</u> tilities				
	S <u>u</u> mmarize	•		A-Z		
	Custom <u>T</u> ables	•	<u> </u>			
	Compare <u>M</u> eans					
	ANO <u>V</u> A Models		av			
	<u>C</u> orrelate					
	<u>R</u> egression	•				
	L <u>o</u> glinear	•	ır	var		
	Classify	•				
	Data Reduction	•				
	Sc <u>a</u> le	⊢				
	<u>N</u> onparametric Tests 🔸		<u>C</u> hi-Square			
	Time Series 🔹 🕨		<u>B</u> inomial			
	<u>S</u> urvival •		<u>R</u> uns			
	Multiple Respons	e 🕨	<u>1</u> -San	nple K-S		
0	1.00		<u>2</u> Independent Samples			
H	1.00		<u>K</u> Independent Samples			
0	1.00		2 Re <u>l</u> ated Samples			
n	1.00		K Related <u>S</u> amples			

The following Tests for Several Independent Samples dialog box is displayed.

Click on the variable *time* and then on the upper right arrow to transfer it to *Test Variable List* box. Then click on the *code* variable and then on the lower right arrow to transfer it to the *Grouping Variable* box. Make sure that the Kruskal-Wallis H test box is checked.

Click on the *Define Range* box and type 1 into *Minimum* box and 5 into the *Maximum* box. Click on *Continue*.

Several Indepe	×	
Range for G	rouping Variable	Continue
M <u>i</u> nimum:	1	Cancel
M <u>a</u> ximum:	5	Help

The Kruskal-Wallis output is displayed in Section 8.