1 Two-dimensional tables for nominal data:

Let X and Y be two nominal random variables with $I\left(A_{i} ; i=1,2, \ldots, I\right)$ and $J\left(B_{j} ; j=1,2, . ., J\right)$ categories respectively. Let $m_{i j}$ denote the expected counts corresponding to the $(i j)$-th cell in a cross-classiced table based on X and Y. That is, using $X_{i j}$ to denote the number of sampled units with $X \in A_{i}$ and $Y \in B_{j}$, we have

$$
m_{i j}=E\left(X_{i j}\right)
$$

where E is taken over the bivariate distribution of X and Y.

1.1 Three Sampling Schmes:

1. With no restriction on the total sample size, $X_{i j}$ has an independent Poisson distribution. That is, in this case (two-dimensional table), the probability dis tribution of $X_{i j}$ is given by

$$
\operatorname{Pr}\left[X_{i j}=x_{i j}\right]=f\left(x_{i j}\right)=\frac{m_{i j}^{x_{i j}} e^{-m_{i j}}}{x_{i j}!} ; x_{i j}=0,1,2, \ldots
$$

Hence, the likelihood is given by

$$
L=\mathrm{Y}_{i, j} \frac{m_{i j}^{x_{i j}} e^{-m_{i j}}}{x_{i j}!}
$$

or log-like lihood is given by

$$
l=\ln (L)={ }_{i j}^{\mathrm{X}} x_{i j} \ln \left(m_{i j}\right)-{ }_{i j}^{\mathrm{X}} m_{i j}-{ }_{i j}^{\mathrm{X}} \ln \left(x_{i j}!\right)
$$

2. For a ixed sample size N , the joint distribution of $X_{i j}$'s will be a multinomial distribution given by

$$
\operatorname{Pr}\left[X_{i j}=x_{i j} ; i=1,2, . . I ; j=1,2, . ., J\right]={\underset{Q}{i, j} x_{i j}!}_{i, j}^{N!} \frac{Y}{}^{\mu} \frac{m_{i j} \mathbf{q}_{x_{i j}}}{N}
$$

Hence, the log-like lihood is given by

$$
l=\ln (N!)+{ }_{i j}^{\mathrm{X}} x_{i j} \ln \left(m_{i j}\right)-{ }_{i j}^{\mathrm{X}} x_{i j} \ln (N)-{ }_{i j}^{\mathrm{X}} \ln \left(x_{i j}!\right) .
$$

3. With i xed mapgins: First consider the case with row (X) margins i xed. That is, $m_{+j}={ }_{i} m_{i j}$ are i xed (known) in advance prior to sampling. In this case, it can be shown that the joint distribution of $X_{i j}$'s will be a product of J independent multinomials, given by

$$
\operatorname{Pr}\left[X_{i j}=x_{i j} ; i=1,2, \ldots I ; j=1,2, \ldots, J\right]={\underset{j,}{\mathrm{Y}}}_{\left[Q_{i, ~}^{m_{+j}!}!\right.}^{m_{i j}!}{ }_{i,}^{\tilde{\mathrm{A}}} \frac{m_{i j}!{ }_{x_{i j}}}{m_{+j}} .
$$

Hence, the log-like lihood is given by

$$
l={ }_{j}^{\mathrm{X}} \ln \left(m_{+j}!\right)+{ }_{i j}^{\mathrm{X}} x_{i j} \ln \left(m_{i j}\right)-{ }_{j}^{\mathrm{X}} x_{+j} \ln \left(m_{+j}\right)-{ }_{i j}^{\mathrm{X}} \ln \left(x_{i j}!\right)
$$

Similarly, for the case with column (Y) margins i xed that is when $m_{i+}=$ ${ }_{j} m_{i j}$ are known), the log-like lihood is given by

Note that in all above cases, the kernel (the term containing both $x_{i j}$ and $m_{i j}$) is

$$
l^{*}={ }_{i j}^{\mathrm{X}} x_{i j} \ln \left(m_{i j}\right) .
$$

Hence, maximizing this kernel with respect to $m_{i j} p^{\text {vith }}$ no constraints on $m_{i j}$ for the i rst sampling scheme; with constraints ${ }_{i j} m_{i j}=N$ under the second sampling spheme; and with constraints ${ }_{i} m_{i j}=m_{+j}$ for i xed row margin case, and ${ }_{j} m_{i j}=m_{i+}$ for i xed column margin case will provide maximum like lihood estimates for $m_{i j}$'s under respective cases.

Also, by noting that Pois son and multinomial belong to the class of exponential PDF's, the quantities $\ln \left(m_{i j}\right)$ are called canonical parameters under above sampling schemes. Since the data collected from any of the above sampling schemes can be treated under one basic model Birch introduced log-linear parameterization which is essentially a reparametrization of parameters under di $3 / 4$ erent models in terms of the canonical parameters $\ln \left(m_{i j}\right)$ under the basic model. In this case the reparmetrization is given by

$$
\begin{equation*}
\ln \left(m_{i j}\right)=\mu+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{i j}^{X Y}, \tag{1}
\end{equation*}
$$

where the λ 's satisfy the linear constraints

$$
{ }_{i}^{\mathrm{X}} \lambda_{i j}^{X Y}=0={ }_{j}^{\mathrm{X}} \lambda_{i j}^{X Y} ;{ }_{i}^{\mathrm{X}} \lambda_{i}^{X}=0={ }_{j}^{\mathrm{X}} \lambda_{j}^{Y} .
$$

That is, there (I-1)(J-1) independent $\lambda_{i j}^{X Y ' s}$, (I-1) independent $\lambda_{i}^{X ' s}$, and (J-1) independent λ_{j}^{Y} 's parameters.

Hypothes is of No Interaction:

$$
H_{0}: \lambda_{i j}^{X Y}=0 ; i=1,2, . . I, j=1,2, . ., J .
$$

Under the Poisson sampling scheme the above hypothesis is known the hypothesis of the multiplicative Poisson model. This can be vericed by noting that under H_{0},

$$
m_{i j}=e^{\mu} e^{\lambda_{i}^{X}} e^{\lambda_{j}^{Y}}
$$

For the mulinomial sampling (with ove rall sample size $N_{, i}$ xed) the above hypothesis represents the hypothesis of independence between X and Y. Where as under the sampling schemes with i xed row or column margins the above hypothesis is equivalent to the hypothesis of homogeneity.

SuÁ cient Statistics:
Us ing the above log-line ar parametrization, we can write the ke rnel of the log-like lihood under all sampling schemes as

$$
\begin{equation*}
l^{*}={ }_{i j}^{\mathrm{X}} x_{i j} \ln \left(m_{i j}\right)=\mu_{i j}^{\mathrm{X}} x_{i j}+_{i}^{\mathrm{X}} x_{i+} \lambda_{i}^{X}+{ }_{j}^{\mathrm{X}} x_{+j} \lambda_{j}^{Y}+{ }_{i j}^{\mathrm{X}} x_{i j} \lambda_{i j}^{X Y} \tag{2}
\end{equation*}
$$

Since the underlying probability models under the above sampling sche mes belong to the family of exponential PDF's, the suÁcient statistics in these cases are the x-terms adjacent to the unknown parameters, λ-terms. Thus, for the saturated model (1) for a two-dimensional table $\left\{x_{i j} ; i=1,2, . ., I, j=\right.$ $1,2, . ., J\}$ is the minimal suÁ cient statistic. Under $H_{0}: \lambda_{i j}^{X Y}=0 ; i=$ $1,2, . ., I, j=1,2, . ., J$, the kernel of log-likelihood for the model (1) reduces
to

$$
l^{*}={ }_{i j}^{\mathrm{X}} x_{i j} \ln \left(m_{i j}\right)=\mu{ }_{i j}^{\mathrm{X}} x_{i j}+{ }_{i}^{\mathrm{X}} x_{i+} \lambda_{i}^{X}+{ }_{j}^{\mathrm{X}} x_{+j} \lambda_{j}^{Y} .
$$

There fore, $\left[\left\{x_{i+} ; i=1,2, \ldots, I\right\},\left\{x_{+j} ; j=1,2, \ldots, J\right\}\right]$ is mimimal suÁ cient statistic.

Following Birch's results (stated later for a more general model) the maximum like lihood estimates for unknown parametes under H_{0} are obtained by solving the following equations for $m_{i j}$:

$$
\begin{aligned}
\boldsymbol{m}_{i+} & =x_{i+} \\
\boldsymbol{m}_{+j} & =x_{+j}
\end{aligned}
$$

That is, the maximum like lihood estimates under H_{0} are given by

$$
\boldsymbol{m}_{i j 0}=\frac{x_{i+} x_{+j}}{x_{++}} .
$$

Note that for the saturated model, since $\left\{x_{i j}\right\}$ is the minimal suÁ cient statistics, the m.l.e are given by

$$
\boldsymbol{m}_{i j}=x_{i j}
$$

Hence, the G^{2} and X^{2} statistics for testing H_{0} are respectively given by
$G^{2}=-2{ }^{\mathrm{X}} x_{i j} \ln \left(\frac{\cong_{i j 0}}{\wp_{i j}}\right)=2\left[{ }_{i j}^{\mathrm{X}} x_{i j} \ln \left(x_{i j}\right)-{ }_{i}^{\mathrm{X}} x_{i+} \ln \left(x_{i+}\right)-{ }_{j}^{\mathrm{X}} x_{+j} \ln \left(x_{+j}\right)+N \ln (N)\right]$
and

$$
X^{2}={ }_{i j}^{\mathrm{X}} \frac{{ }^{3} x_{i j}-\wp_{i j 0}^{\prime}{ }_{2}^{\prime}}{\wp_{i j 0}}
$$

When H_{0} is true, both statistics are distributed as χ^{2} with degrees of freedom equal to $(I-1)(J-1)$. It can be shown that (see Lemma 14.9_1; BFH, page 514)

$$
G^{2}=X^{2}+O_{p}\left(N^{-1 / 2}\right)
$$

Relationships between λ-terms: Consider two λ-terms, one with r subscripts and the other with s subscripts, where $\dot{r}>s$. Then these two terms are relatives if the r subscripts contain among them all the s subscripts, and the term with r subscripts is called a higher order relative term. For example, in a two-dimensional table model $\lambda_{i j}^{X Y}$ is higher order relative of both λ_{i}^{X} and λ_{j}^{Y} terms.

The hierarchy principle:
The family of hierarchical models is de $_$ned as the family of log-linear models such that if any λ-term is set equal to zero, all its higer-order relatives must also be set equal to zero. Conversely, if any λ-term is not zero, its lower-order relatives must be present in the log-linear model.

2 Three dimensional Tables:

Consider three categorical variables X, Y, Z, respectively, having I, J and K cate gories. With sample size N we have a three-way table of counts by crossclasifying X, Y and Z, and denote a typical count $n_{i j k}$ where $i=1,2, . ., I$,
$j=1,2, \ldots, J$ and $k=1,2, \ldots, K$. Similarly de note the cell probability (the probability that an observation falls in the given cell) by $p_{i j k}$ and the expected cell count as $m_{i j k}$. The saturated model in this is given by

$$
\ln \left(m_{i j k}\right)=\mu+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z}+\lambda_{i j k}^{X Y Z}
$$

with suitable constraints as in the case of two-dimensional table. The above model consists of a list of terms, called generators, corresponding to the maximal interaction term $X Y Z$ in the model. Following the heirachy principle, this term uniquely $\operatorname{de}_{¿}$ nes the above model. Hence, this maximal interaction term is called the generator of the model. Now, consider a simple model

$$
\ln \left(m_{i j k}\right)=\mu+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z}+\lambda_{i j}^{X Y}+\lambda_{i k}^{X Z}+\lambda_{j k}^{Y Z} .
$$

Note that in the above model maximal interaction terms are $X Y, X Z$ and $Y Z$. Hence, in this case we call $X Y, X Z$ and $X Z$ as generators of the model.

Mutually Independent Model: If the model containing only main $e^{3 / 4}$ ects (i.e., when all interactions are absent) is the best i tted model then the variables X, Y and Z are said to be mutually independently distributed. This can be seen as follows. Consider the main $\mathrm{e}^{3 / 4}$ ects model, that is the model with ge nerators X, Y and Z,

$$
\ln \left(m_{i j k}\right)=\mu+\lambda_{i}^{X}+\lambda_{j}^{Y}+\lambda_{k}^{Z} .
$$

Under this model, we can note that

$$
p_{i j k}=\left(p_{i++}\right)\left(p_{+j+}\right)\left(p_{++k}\right),
$$

where $p_{i++}={ }^{\mathrm{P}}{ }_{j k} p_{i j k}, p_{+j+}={ }^{\mathrm{P}}{ }_{i k} p_{i j k}$ and $p_{++k}={ }^{\mathrm{P}}{ }_{i j} p_{i j k}$. Also, from above equation it follows X

$$
{ }_{k}^{\mathrm{X}} p_{i j k}=p_{i j+}=p_{i++} p_{+j+}
$$

which implies X and Y are independent. Similarly independence between X and Z, and between Y and Z follows.

3 Multidimensional Tables:

Extending the results of the pre vious sections to multidimensional tables is quite straightforward except for notational diÁ culty.

NOTATIONS:

Let
$d=$ dimension of a table
$\Delta=$ Set of d cate gorical variables.
$I_{j}=\#$ of categories associated with the j-th variable
$\theta=\left\{i_{1} i_{2} \ldots i_{d}\right\}$ the complete set of subscripts, where $i_{j}=1,2, \ldots, I_{j}$.
$\eta=\#$ of subsets $\theta_{k} \subseteq \theta$
$\lambda_{i}^{a}=$ general interaction term with set of variables de ${ }_{i}$ ned by $a \subseteq \Delta$. It is understood here that λ_{i}^{a} depends on i only through i_{a} where i_{a} is a sub d-tuple of i.
$c=\#$ of suÁ cient con¿ gurations $\left(\theta_{k} \subseteq \theta ; k=1,2, \ldots \eta\right)$
$C_{\theta_{i}}=$ con \grave{i} guration corre sponding to $\theta_{i}, i=1,2, \ldots, \eta$
$x_{\theta}=$ observed count in an elementary cell
$x_{\theta_{i}}=$ observed count in a cell de ${ }_{¿}$ ned by the con_{i} guration $C_{\theta_{i}}$
$m_{\theta}=\operatorname{expected}_{\mathrm{p}}$ count in an elementary cell
$\ln \left(m_{\theta}\right)={ }_{a \subseteq \Delta} \lambda_{i}^{a}$, the full (saturated model)
$m_{\theta_{i}}=$ expected count in a cell de i_{i} ned by the con i guration $C_{\theta_{i}}$
$\boldsymbol{m}_{\theta}=$ The m.l.e of m_{θ}
$\overbrace{\theta_{i}} \overline{\overline{\mathrm{P}}}$ The m.l.e of $m_{\theta_{i}}$
$N={ }_{\theta} x_{\theta}=$ Sample size.

3.1 Steps for generating suÁ cient conig gurations and

 suÁ cient statistics for hierarchical models:(i). Select λ-terms of highest order interaction, say t, in the model $(\mathrm{t} \leq d)$
(ii). If all possible interactions of order t (there are ${ }_{t}^{d}$ interaction terms of order t) are included in the model, stop selection with con i gurations corresponding to these interactions giving $\left\{C_{l}\right\}$.
(iii) Otherwise, continue by examining terms of order $(t-1)$ and select those that are not lower order relatives of terms of order t in the model.
(iv). Continue this process for λ-terms of every order and select at each step only those terms not included in higher order terms.

