1 Two-dimensional tables for nominal data:

Let X and Y be two nominal random variables with I( A;;i=1,2,..,I) and
J(Bj; j =1,2,..,J) categories respectively. Let m;; denote the expected
counts corresponding to the (ij)-th cell in a cross-classi;ed table based on
X and Y. That is, using X;; to denote the number of sampled units with
X €A andY € Bj, we have

mi; = E(Xy;)

where E is taken over the bivariate distribution of X and Y.

1.1 Three Sampling Schmes:

1. With no restriction on the total sample size, X;; has an independent Pois-
son distribution. Thatis, in this case (two-dimensionaltable), the probability
distribution of X; is given by

my;’ e
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Hence, the likelihood is given by
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2. For a (xed sample size N, the joint distribution of X;;'s will be a
multinomial distribution given by

N Y My, Ty
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Hence, the log-likelihood is given by
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= IH(N') + Tij ln(mij) — Tij IH(N) — IH(J}Z]')
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3. With ¢ xed maigins: First consider the case with row (X) margins
¢xed. Thatis, my; = ;m;; are ¢ xed (known) in advance prior to sampling.
In this case, it can be shown that the joint distribution of X,;'s will be a
product of J independent multinomials, given by

L
Y omy! Y my

g, Tigt g My
Hence, the log-likelihood is given by
X
l= In(myh)+ zyln(my) — zy;ln(mey) —  In(xy!).
J ] J ]

imilarly, for the case with column (Y)) margins ¢ xed (that is when m;, =
;my; are known), the log-likelihood is given by

> >
l=In(mi!))+  zjln(m) —  zpIn(mie) —  In(zyy!).
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Note that in allabove cases, the kernel (the term containing both z;; and

mi]’) is >
"= xjIn(my).

)
Hence, maximizing this kernel with respect to m;; e_o;ith no constraints on
m;; for the ¢rst sampling scheme; with constraiq§ ;s Mi; = N under the
second sampling slg1eme; and with constraints = ;m;; = my,; for ¢ xed row
margin case, and ~ ;m;; = my, for ¢ xed column margin case will provide
maximum likelihood estimates for m;;'s under respective cases.

Also, by noting that Poisson and multinomial belong to the class of expo-
nential PDF's, the quantities In(m,;) are called canonical parameters under
above sampling schemes. Since the data collected from any of the above
sampling schemes can be treated under one basic model Birch introduced
log-linear parameterization which is essentially a reparametrization of para-
meters under di¥%erent models in terms of the canonical parameters ln(m;;)
under the basic model. In this case the reparmetrization is given by

where the X's satisfy the linear constraints
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That is , there (I-1)(J-1) independent AS"'s, (I-1) independent XX's , and
(J-1) independent AY's parameters.
Hypothesis of No Interaction:

Ho: A\ =0;i=1,2,.1,j=1,2,.., J

Under the Poisson sampling scheme the above hypothesis is known the hy-
pothesis of the multiplicative Poisson model. This can be veri;,ed by noting
that under Hy,
mi; = eteM e

For the mulinomial sampling (with overall sample size N,; xed) the above hy-
pothesis represents the hypothesis of independence between X and Y.Where
as under the sampling schemes with ¢ xed row or column margins the above
hypothesis is equivalent to the hypothesis of homogeneity.

SUA cient Statistics:

Using the above log-linear parametrization, we can write the kernel of the
log-likelihood under all sampling schemes as

=< =< =< =< =<
" = Tij ln(mij) = U Lij + iL'H_)\lX + x+]’)\;/ + xij)\f](-y (2)
) ) ? J )

Since the underlying probability models under the above sampling schemes
belong to the family of exponential PDF's, the suA cient statistics in these
cases are the x-terms adjacent to the unknown parameters, A—terms. Thus,
for the saturated model (1) for a two-dimensionaltable {z;;;i=1,2,..,I,j =
1,2,.,J} is the minimal suA cient statistic. Under Hy : AX" = 0;i =
1,2,..,1,5 =1,2,..,J, the kernel of log-likelihood for the model (1) reduces

to > > >
l* = iL‘ij ln(mij) = U iL‘ij + iL‘H_)\ZX + $+j)\;/.
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Therefore, [{zi;i = 1,2,...., 1}, {z;;5 = 1,2,...,J}] is mimimal suA cient
statistic.

Following Birch's results (stated later for a more general model) the max-
imum likelihood estimates for unknown parametes under H, are obtained by
solving the following equations for m,;:

@i = Ty

m+]’ = T4y



That is, the maximum likelihood estimates under Hy are given by

Note that for the saturated model, since {z;;} is the minimal suA cient sta-
tistics, the m.lL.e are given by

mij = Tjj.

Hence, the G? and X? statistics for testing H, are respectively given by

) < B0 < < <
G"=-2 ayln(—)=2[ zyhn(zy)— zn(zg)—  z4n(z)+NIn(N)]
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When Hj is true, both statistics are distributed as x? with degrees of freedom
equalto (I—1)(J—1). Itcan be shown that (see Lemma 14.9_1; BFH, page
514)

G* = X?+ O,(N7'?).

Relationships between A-terms: Consider two A-terms, one with r sub-
scripts and the other with s subscripts, where 7 > s. Then these two terms
are relatives if the r subscripts contain among them all the s subscripts,
and the term with r subscripts is called a higher order relative term. For
example, in a two-dimensional table model )\fjf.y is higher order relative of
both A and A terms.

The hierarchy principle:

The family of hierarchical models is de¢ned as the family of log-linear
models such thatifany A—term is setequalto zero, allits higer-order relatives
must also be set equal to zero. Conversely, if any A—term is not zero, its
lower-order relatives must be present in the log-linear model.

2 Three dimensional Tables:
Consider three categorical variables X, Y, Z , respectively, having I, J and K

categories. With sample size N we have a three-way table of counts by cross-
clasifying X,Y and Z, and denote a typical count n;;, where i = 1,2,..,1,
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j=12..Jand k = 1,2 ..., K. Similarly denote the cell probability (the
probability thatan observation falls in the given cell) by p;;, and the expected
cell count as m;;;,. The saturated model in this is given by

XYZ

In(mie) = p+ N+ A+ M+ A5+ A7+ A7+ A%

with suitable constraints as in the case of two-dimensional table. The above
model consists of a list of terms, called generators, corresponding to the max-
imal interaction term XY Z in the model. Following the heirachy principle,
this term uniquely de¢ nes the above model. Hence, this maximal interaction
term is called the generator of the model. Now, consider a simple model

In(mgr) = o+ A5+ A+ 0+ 25+ 007 + 27

Note that in the above model maximal interaction terms are XY, XZ and
Y Z. Hence, in this case we call XY, XZand XZ as generators of the model.
Mutually Independent Model: If the model containing only main
e%iects (i.e., when all interactions are absent) is the best ¢ tted model then
the variables X,Y and Z are said to be mutually independently distributed.
This can be seen as follows. Consider the main e%ects model, that is the
model with generators X,Y and Z,

In(mgr) = p+ N+ A + A7
Under this model, we can note that

Pijk = (pi++)(p+j+)(p++k)7

P P P
equation it follows >

Pijk = Pij+ = Di+4+DP+j+
k

which implies X and Y are independent. Similarly independence between
X and Z, and between Y and Z follows.

3 Multidimensional Tables:

Extending the results of the previous sections to multidimensional tables is
quite straightforward except for notational diA culty.
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NOTATIONS:

Let

d =dimension of a table

A =Set of dcategorical variables.

I; = # of categories associated with the j-th variable

6 = {i1i2...i4} the complete set of subscripts, where i; =1,2,..., ;.

n = # of subsets 4, C 6

A =general interaction term with set of variables de;,ned by a C A. It
is understood here that A; depends on i only through 4, where i, is a sub
d—tuple of 4.

c =# of suA cient cong gurations (8 C 6;k =1,2,...n)

Cy, =con¢ guration corresponding to 6,,i =1,2,...,n

xg =0bserved count in an elementary cell

xg, = Observed count in a cell de¢ ned by the con¢ guration Cy,

me :expe|1_;ted count in an elementary cell

In(mg) = 4ca A7, the full (saturated model)

m, =expected count in a cell de¢ ned by the con¢ guration C,

@y = The m.lL.e of my

@, =,The m.lLe of m,
N = o Tg =Sample size.

3.1 Steps for generating suA cient con¢ gurations and
suA cient statistics for hierarchical models:

(). Select A—terms of highest order interaction, say t, dn-the model (t< d)
(. Ifall possible interactions of order ¢ (there are ‘Z interaction terms
of order t) are included in the model, stop selection with con¢ gurations cor-

responding to these interactions giving {C;}.
(iii) Otherwise, continue by examining terms of order (¢ — 1) and select
those that are not lower order relatives of terms of order ¢ in the model.
(iv). Continue this process for A-terms of every order and select at each

step only those terms not included in higher order terms.



