
1 Two-dimens iona l tables for nomina l da ta :
Let X and Y be two nominal random variables with I( Ai ; i = 1, 2, .., I) and
J (Bj; j = 1, 2, .., J) categories respective ly. Le t mij denote the expected
counts corresponding to the (ij)-th ce ll in a cross -class i¿ ed table based on
X and Y. That is , us ing Xij to denote the number of sampled units with
X ∈ Ai and Y ∈ Bj , we have

mij = E(Xij)

where E is taken over the biva ria te distribution of X and Y.

1.1 Three Sampling Schmes:
1. With no res triction on the tota l sample s ize , Xij has an independent Pois -
son dis tribution. Tha t is , in this case (two-dimens ional table ), the probability
dis tribution of Xij is given by

Pr[Xij = xij ] = f(xij) =
m
xij
ij e

−mij

xij!
; xij = 0, 1, 2, ....

Hence , the like lihood is given by

L =
Y
i,j

m
xij
ij e

−mij

xij!
,

or log-like lihood is given by

l = ln(L) =
X
ij

xij ln(mij)−
X
ij

mij −
X
ij

ln(xij!).

2. For a ¿ xed sample s ize N, the joint dis tribution of Xij 's will be a
multinomia l dis tribution given by

Pr[Xij = xij ; i = 1, 2, ..I ; j = 1, 2, .., J] =
N !Q
i,j xij!

Y
i,j

µ
mij

N

¶xij
.

Hence , the log-like lihood is given by

l = ln(N !) +
X
ij

xij ln(mij)−
X
ij

xij ln(N)−
X
ij

ln(xij !).
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3. With ¿ xed margins : Firs t conside r the case with row (X) margins
¿ xed. Tha t is , m+j =

P
imij are ¿ xed (known) in advance prior to sampling.

In this case, it can be shown that the joint dis tribution of Xij 's will be a
product of J independent multinomia ls , given by

Pr[Xij = xij; i = 1, 2, ..I; j = 1, 2, .., J ] =
Y
j,

[
m+j !Q
i, xij!

Y
i,

Ã
mij

m+j

!xij
.

Hence , the log-like lihood is given by

l =
X
j

ln(m+j!) +
X
ij

xij ln(mij)−
X
j

x+j ln(m+j)−
X
ij

ln(xij !).

Simila rly, for the case with column (Y ) margins ¿ xed (tha t is when mi+ =P
jmij are known), the log-like lihood is given by

l =
X
i

ln(mi+!) +
X
ij

xij ln(mij)−
X
i

xi+ ln(mi+)−
X
ij

ln(xij!).

Note tha t in a ll above cases , the kerne l (the te rm conta ining both xij and
mij) is

l∗ =
X
ij

xij ln(mij).

Hence , maximizing this ke rne l with respect to mij with no cons tra ints on
mij for the ¿ rs t sampling scheme; with cons tra ints

P
ijmij = N under the

second sampling scheme; and with constra ints
P
imij = m+j for ¿ xed row

margin case , and
P
jmij = mi+ for ¿ xed column margin case will provide

maximum likelihood es tima tes for mij 's under respective cases .
Also, by noting tha t Poisson and multinomia l belong to the class of expo-

nential PDF's , the quantitie s ln(mij) are ca lled canonica l pa ramete rs under
above sampling schemes . Since the da ta collected from any of the above
sampling schemes can be trea ted under one bas ic mode l Birch introduced
log-linea r paramete rization which is essentia lly a reparametriza tion of para -
mete rs under di¾ erent mode ls in te rms of the canonica l paramete rs ln(mij)
under the bas ic mode l. In this case the reparmetriza tion is given by

ln(mij) = µ+ λ
X
i + λ

Y
j + λ

XY
ij , (1)

where the λ's sa tis fy the linear constra intsX
i

λXYij = 0 =
X
j

λXYij ;
X
i

λXi = 0 =
X
j

λYj .
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That is , the re (I-1)(J -1) independent λXYij 's , (I-1) independent λXi 's , and
(J -1) independent λYj 's paramete rs .

Hypothes is of No Interaction:

H0 : λ
XY
ij = 0; i = 1, 2, ..I, j = 1, 2, .., J.

Under the Poisson sampling scheme the above hypothes is is known the hy-
pothes is of the multiplica tive Poisson mode l. This can be veri¿ ed by noting
tha t under H0,

mij = e
µeλ

X
i eλ

Y
j .

For the mulinomial sampling (with overall sample s ize N,¿ xed) the above hy-
pothes is represents the hypothes is of independence be tween X and Y.Where
as under the sampling schemes with ¿ xed row or column margins the above
hypothes is is equiva lent to the hypothesis of homogene ity.

SuÁ cient Sta tis tics :
Us ing the above log-linea r parametriza tion, we can write the kerne l of the

log-likelihood under all sampling schemes as

l∗ =
X
ij

xij ln(mij) = µ
X
ij

xij +
X
i

xi+λ
X
i +

X
j

x+jλ
Y
j +

X
ij

xijλ
XY
ij (2)

Since the underlying probability mode ls under the above sampling schemes
be long to the family of exponentia l PDF's , the suÁ cient sta tis tics in these
cases a re the x-te rms adjacent to the unknown paramete rs , λ−te rms. Thus ,
for the sa tura ted model (1) for a two-dimens iona l table {xij; i = 1, 2, .., I, j =
1, 2, .., J} is the minimal suÁ cient s ta tistic. Under H0 : λXYij = 0 ; i =
1, 2, .., I, j = 1, 2, .., J , the kerne l of log-like lihood for the mode l (1) reduces
to

l∗ =
X
ij

xij ln(mij) = µ
X
ij

xij +
X
i

xi+λ
X
i +

X
j

x+jλ
Y
j .

There fore, [{xi+; i = 1, 2, ..., I},{x+j; j = 1, 2, ..., J}] is mimimal suÁ cient
s tatis tic.

Following Birch's results (s ta ted la te r for a more general mode l) the max-
imum like lihood es tima tes for unknown parametes under H0 are obta ined by
solving the following equa tions for cmij:

cmi+ = xi+cm+j = x+j.
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That is, the maximum likelihood es timates under H0 are given by

cmij0 =
xi+x+j
x++

.

Note tha t for the sa tura ted model, since {xij} is the minimal suÁ cient s ta -
tis tics, the m.l.e are given by

cmij = xij.

Hence , the G2 and X2 s ta tis tics for tes ting H0 are respectively given by

G2 = −2X
ij

xij ln(
cmij0cmij

) = 2[
X
ij

xij ln(xij)−
X
i

xi+ ln(xi+)−
X
j

x+j ln(x+j)+N ln(N)]

and

X2 =
X
ij

³
xij −cmij0

´2
cmij0

.

When H0 is true, both s tatis tics are dis tributed as χ2 with degrees of freedom
equa l to (I−1)(J−1). It can be shown tha t (see Lemma 14.9_1; BFH, page
514)

G2 = X2 +Op(N
−1/2).

Relationships be tween λ-te rms: Cons ider two λ-terms , one with r sub-
scripts and the othe r with s subscripts , where ṙ > s. Then these two te rms
are re latives if the r subscripts conta in among them all the s subscripts ,
and the term with r subscripts is ca lled a higher order relative te rm. For
example , in a two-dimens ional table mode l λXYij is higher order re la tive of
both λXi and λYj te rms .

The hie ra rchy principle:
The family of hie ra rchical mode ls is de¿ ned as the family of log-linear

mode ls such tha t if any λ−te rm is se t equa l to zero, all its higer-order re la tives
must a lso be set equal to ze ro. Conversely, if any λ−te rm is not ze ro, its
lower-order re la tives must be present in the log-linea r mode l.

2 Three dimens iona l Tables :
Cons ide r three categorical va riables X, Y, Z , re spective ly, having I, J and K
categories . With sample s ize N we have a three -way table of counts by cross -
clasifying X, Y and Z, and denote a typica l count nijk where i = 1, 2, .., I,
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j = 1, 2, ..., J,and k = 1, 2, ...,K. Simila rly denote the ce ll probability (the
probability tha t an obse rva tion fa lls in the given ce ll) by pijk and the expected
cell count as mijk. The sa tura ted model in this is given by

ln(mijk) = µ + λ
X
i + λ

Y
j + λ

Z
k + λ

XY
ij + λXZik + λY Zjk + λ

XY Z
ijk

with suitable cons traints as in the case of two-dimens ional table. The above
mode l cons is ts of a list of te rms , ca lled generators, corresponding to the max-
imal inte raction te rm XY Z in the mode l. Following the he irachy principle,
this term uniquely de¿ nes the above model. Hence, this maximal inte raction
term is ca lled the generator of the mode l. Now, cons ide r a simple model

ln(mijk) = µ+ λ
X
i + λ

Y
j + λ

Z
k + λ

XY
ij + λXZik + λY Zjk .

Note that in the above model maximal inte raction te rms are XY,XZ and
Y Z. Hence, in this case we ca llXY,XZ and XZ as genera tors of the mode l.

Mutua lly Independent Mode l: If the model conta ining only main
e¾ ects (i.e ., when a ll inte ractions are absent) is the bes t ¿ tted mode l then
the variables X, Y and Z are sa id to be mutua lly independently dis tributed.
This can be seen as follows . Cons ide r the main e¾ ects model, that is the
mode l with genera tors X,Y and Z,

ln(mijk) = µ + λ
X
i + λ

Y
j + λ

Z
k .

Under this mode l, we can note tha t

pijk = (pi++)(p+j+)(p++k),

where pi++ =
P
jk pijk, p+j+ =

P
ik pijk and p++k =

P
ij pijk. Also, from above

equa tion it follows X
k

pijk = pij+ = pi++p+j+

which implies X and Y are independent. Simila rly independence be tween
X and Z, and be tween Y and Z follows .

3 Multidimens iona l Tables:
Extending the results of the previous sections to multidimens ional tables is
quite s tra ightforward except for notational diÁ culty.
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NOTATIONS:
Let
d =dimens ion of a table
∆ =Set of d ca tegorica l va riables .
Ij = # of ca tegories associated with the j-th variable
θ = {i1i2...id} the complete se t of subscripts , where ij = 1, 2, ..., Ij.
η = # of subse ts θk ⊆ θ
λai =general interaction term with set of variables de¿ ned by a ⊆ ∆. It

is understood here tha t λai depends on i only through ia where ia is a sub
d−tuple of i.
c =# of suÁ cient con¿ gurations (θk ⊆ θ; k = 1, 2, ...η)
Cθi =con¿ gura tion corresponding to θi, i = 1, 2, ..., η
xθ =observed count in an e lementa ry cell
xθi = observed count in a cell de¿ ned by the con¿ gura tion Cθi
mθ =expected count in an e lementary ce ll
ln(mθ) =

P
a⊆∆ λ

a
i , the full (sa turated mode l)

m
θi
=expected count in a ce ll de¿ ned by the con¿ gura tion Cθicmθ = The m.l.e of mθcm

θi
= The m.l.e of m

θi

N =
P
θ xθ =Sample s ize .

3.1 Steps for gene ra ting suÁ cient con¿ gura tions and
suÁ cient s ta tis tics for hierarchica l models :

(i). Se lect λ−te rms of highes t order interaction, say t, in the mode l (t≤ d)
(ii). If a ll poss ible interactions of order t (there a re

³
d
t

´
inte raction terms

of order t) are included in the mode l, s top selection with con¿ gurations cor-
responding to these inte ractions giving {Cl}.

(iii) Otherwise , continue by examining terms of order (t − 1) and select
those that a re not lower order re latives of te rms of order t in the mode l.

(iv). Continue this process for λ-te rms of every order and se lect a t each
s tep only those te rms not included in higher order terms .
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