ASG2 Solutions

Ex 3-1:
a). $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
H_{1} : Not all means are equal

ANOVA

STRENGTH

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	489740.2	3	163246.729	12.728	.000
Within Groups	153908.3	12	12825.688		
Total	643648.4	15			

F-test statistic value is 12.728 .
From F-table with 3 numerator df and 12 denominator df at 5% level is 3.49
Since, F-statistic value is larger than 3.49 , reject H_{0} at $\alpha=0.05$
Or

P-value is less than 0.001 which is small compared 0.05 hence reject the null hypothesis. b).

Multiple Comparisons

Dependent Variable: STRENGTH

			Mean Difference			95\% Confid	nce Interval
	(I) TECHNIQU	(J) TECHNIQU	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
LSD	1.00	2.00	-185.2500*	80.0802	. 039	-359.7298	-10.7702
		3.00	37.2500	80.0802	. 650	-137.2298	211.7298
		4.00	304.7500*	80.0802	. 003	130.2702	479.2298
	2.00	1.00	185.2500*	80.0802	. 039	10.7702	359.7298
		3.00	222.5000*	80.0802	. 017	48.0202	396.9798
		4.00	490.0000*	80.0802	. 000	315.5202	664.4798
	3.00	1.00	-37.2500	80.0802	. 650	-211.7298	137.2298
		2.00	-222.5000*	80.0802	. 017	-396.9798	-48.0202
		4.00	267.5000*	80.0802	. 006	93.0202	441.9798
	4.00	1.00	-304.7500*	80.0802	. 003	-479.2298	-130.2702
		2.00	-490.0000*	80.0802	. 000	-664.4798	-315.5202
		3.00	-267.5000*	80.0802	. 006	-441.9798	-93.0202

*. The mean difference is significant at the .05 level.

Duncan's Test

STRENGTH

			Subset for alpha $=.05$		
	TECHNIQU	N	1	2	3
Duncan $^{\text {a }}$	4.00	4	2666.2500		
	3.00	4		2933.7500	
1.00	4		2971.0000		
2.00		4			3156.2500
	Sig.			1.000	.650

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size $=4.000$.
d).

Normal P-P plot

Normality assumptions is reasonable.
e).

There is some systematic pattern exist. Smaller value of residual correspond to smaller values of the outcome variable (var0002).
f). Box Plot:

1. Techniques 1 and 3 look 'alike'
2. Technique 2 is 'different' from other three techniques.
3. Technique 4 is different from other three.
4. Technique 2 has highest mean and technique 4 has the lowest mean.

Ex 3-4
a).
ANOVA

DENSITY					
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	.156	3	.052	2.024	.157
Within Groups	.360	14	.026		
Total	.516	17			

Since the p -value is 0.157 for testing difference among group means,
we do no reject $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
No statistical differences among mean density for 4 temp. settings.
c).

Plot of residuals vs groups (Temp).

Spread (variation) of residuals across temp groups looks approximately equal and hence the constant variance assumption for the error term looks to be true.

P-P plot to validate normality assumption.

Since, all the points approximately lie on the diagonal line, the normal assumption on the error term looks to be true.

$$
\text { d). } \sqrt{M S_{E} / n=} \sqrt{0.026 / n}
$$

EX 3-6
a). $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$.
H_{1} : Not all means are same.

ANOVA

CONDUCTI

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	844.688	3	281.563	14.302	.000
Within Groups	236.250	12	19.688		
Total	1080.938	15			

At 5\% level of significance, we reject the null hypothesis since the p-value is smaller than 0.001 and conclude that mean conductivity differ statistically across 4 coating types.
b).

Descriptives

CONDUCTI

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
1.00	4	145.0000	3.91578	1.95789	138.7691	151.2309	141.00	150.00
2.00	4	145.2500	6.65207	3.32603	134.6651	155.8349	137.00	152.00
3.00	4	132.2500	3.86221	1.93111	126.1044	138.3956	127.00	136.00
4.00	4	129.2500	2.06155	1.03078	125.9696	132.5304	127.00	132.00
Total	16	137.9375	8.48896	2.12224	133.4141	142.4609	127.00	152.00

95\% Cl for coating type 4 is [125.9696, 132.5304]
$99 \% \mathrm{Cl}$ for the mean difference between coating types 1 and 4 is given by
[145-129.25]+/-(2.545* $\left.\sqrt{M S_{E} / n}\right)$ which is equivalent to
[145-129.25]+/-(2.545* $\sqrt{19.688 / 4})$.
d).

Multiple Comparisons
Dependent Variable: CONDUCTI

(1) TYPE	(J) TYPE	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
1.00	2.00	-. 2500	3.13748	. 938	-7.0860	6.5860
	3.00	12.7500*	3.13748	. 002	5.9140	19.5860
	4.00	15.7500*	3.13748	. 000	8.9140	22.5860
2.00	1.00	. 2500	3.13748	. 938	-6.5860	7.0860
	3.00	13.0000*	3.13748	. 001	6.1640	19.8360
	4.00	16.0000*	3.13748	. 000	9.1640	22.8360
3.00	1.00	-12.7500*	3.13748	. 002	-19.5860	-5.9140
	2.00	-13.0000*	3.13748	. 001	-19.8360	-6.1640
	4.00	3.0000	3.13748	. 358	-3.8360	9.8360
4.00	1.00	-15.7500*	3.13748	. 000	-22.5860	-8.9140
	2.00	-16.0000*	3.13748	. 000	-22.8360	-9.1640
	3.00	-3.0000	3.13748	. 358	-9.8360	3.8360

*. The mean difference is significant at the .05 level.
Significant differences exist between types 1 and 3 (p-value $=0.002$), between types 1 and 4 (with p-value <0.001), between types 2 and 3 (p-value $=0.001$), between types 2 and 4 (p-value <0.001). Hence, statistically (at 5% level) we can conclude that types 1 and 2 as one group and types 3 and 4 as another group with respect to mean conductivity.
f). Since minimum value for the mean conductivity is required and type 4 being currently used which has a minimum value for the mean conductivity the recommendation to the manufacturer is to continue with the current type and the current type (type 4) is not statistically different from type 3 .

Ex 3-9:
a).
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}=\mu_{6}$.
H_{1} : Not all means are same.

ANOVA

RADON

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1133.375	5	226.675	30.852	. 000
Within Groups	132.250	18	7.347		
Total	1265.625	23			

Reject the null hypothesis since the p -value (<0.001) is smaller than 0.05 and hence conclude that size of the orifice statistically (at 5% level of significance) affect the mean percentage of radon released.
b).P-value is small the probability that F -statistics is larger than 30.852 when the null hypothesis is assumed to be true. In this case the p-value is <0.001 (In the exam no need to compute the exact p-value, just give reasonable upper boundary if the value is small, or lower boundary if the value is larger than 0.10)
c). Residual analysis
i). P-P plot to test normality

Since, all the points approximately lie on the diagonal line, the normal assumption on the error term looks to be true.
ii). To test constant variance across treatment groups.

Spread (variation) of residuals across diameter groups looks approximately equal and hence the constant variance assumption for the error term looks to be true.
d).

Descriptives

RADON

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
. 37	4	82.7500	2.06155	1.03078	79.4696	86.0304	80.00	85.00
. 51	4	77.0000	2.30940	1.15470	73.3252	80.6748	75.00	79.00
. 71	4	75.0000	1.82574	. 91287	72.0948	77.9052	73.00	77.00
1.02	4	71.7500	3.30404	1.65202	66.4925	77.0075	67.00	74.00
1.40	4	65.0000	3.55903	1.77951	59.3368	70.6632	62.00	69.00
1.99	4	62.7500	2.75379	1.37689	58.3681	67.1319	60.00	66.00
Total	24	72.3750	7.41803	1.51420	69.2426	75.5074	60.00	85.00

$95 \% \mathrm{CI}$ for the mean radon when the diameter is 1.40 is given by [59.3368, 70.6632]

Ex 3-10
a). $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
H_{1} : Not all means are same.

ANOVA

RESP_TIM

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	543.600	2	271.800	16.083	.000
Within Groups	202.800	12	16.900		
Total	746.400	14			

Reject the null hypothesis at 1% level of significance since the p-value is smaller than 0.001 and hence conclude that mean response time differ statistically (at 1% level of significance) across 3 circuit types.
b). Tukey's test

Multiple Comparisons

Dependent Variable: RESP_TIM
Tukey HSD

(I) CIRC_TYP	(J) CIRC_TYP	Mean Difference (I-J)	Std. Error	Sig.	99\% Confidence Interval	
					Lower Bound	Upper Bound
1.00	2.00	-11.4000*	2.60000	. 002	-20.6768	-2.1232
	3.00	2.4000	2.60000	. 637	-6.8768	11.6768
2.00	1.00	11.4000*	2.60000	. 002	2.1232	20.6768
	3.00	13.8000*	2.60000	. 001	4.5232	23.0768
3.00	1.00	-2.4000	2.60000	. 637	-11.6768	6.8768
	2.00	-13.8000*	2.60000	. 001	-23.0768	-4.5232

*. The mean difference is significant at the .01 level.
Types 1 and 2, and types 2 and 3 are statistically different with respect to mean response time at 1% level of signficance. However, types 1 and 3 are not statistically different. e).

Descriptives

	N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound		
1.00	5	10.8000	2.77489	1.24097	7.3545	14.2455	8.00	15.00
2.00	5	22.2000	4.86826	2.17715	16.1553	28.2447	17.00	30.00
3.00	5	8.4000	4.39318	1.96469	2.9452	13.8548	5.00	16.00
Total	15	13.8000	7.30166	1.88528	9.7565	17.8435	5.00	30.00

Since, mean response time is required type 3 has the least mean response time. Further, type 1 and type 3 are not statistically different, but both types are different from type 2, we recommend type 3 or type 1 .
f).
i). Normality assumption validation.

Since all point are not (at least roughly) on the diagonal line we suspect the normality assumption.
ii). Constant variance assumption validation.

Residuals for Types 2 and 3 tend to have more variations than residuals for type I we can suspect constant variance assumption.
Ex 4-2
$\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}$.
H_{1} : Not all means are same.
Tests of Between-Subjects Effects
Dependent Variable: GROWTH

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1810.417^{\text {a }}$	5	362.083	41.913	.000
Intercept	4218.750	1	4218.750	488.344	.000
BLOCK	1106.917	3	368.972	42.711	.000
SOLUTION	703.500	2	351.750	40.717	.000
Error	51.833	6	8.639		
Total	6081.000	12			
Corrected Total	1862.250	11			

a. R Squared $=.972$ (Adjusted R Squared $=.949)$

Reject the null hypothesis (equality of means for 3 solutions) even at 1% level of significance since the p-value (corresponding to solution) is <0.001 and hence conclude that mean effectiveness in retarding bacteria growth is significantly (at 1% level) different across 3 solutions.

Ex4-5

a). $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}$
H_{1} : Not all means are same.

Tests of Between-Subjects Effects
Dependent Variable: SHAPE

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$.165^{\text {a }}$	9	$1.834 \mathrm{E}-02$	6.401	.000
Intercept	22.119	1	22.119	7720.507	.000
NOZZLE	.102	4	$2.555 \mathrm{E}-02$	8.916	.000
JET_VELO	$6.287 \mathrm{E}-02$	5	$1.257 \mathrm{E}-02$	4.389	.007
Error	$5.730 \mathrm{E}-02$	20	$2.865 \mathrm{E}-03$		
Total	22.342	30			
Corrected Total	.222	29			

a. R Squared $=.742($ Adjusted R Squared $=.626)$

Reject the null hypothesis (equality of means for 5 types of Nozzles) at 5\% level of significance since the p-value (corresponding to NOZZLE) is <0.001 and hence conclude that nozzle design affect the shape factor.

By looking at the above plot, we can conclude that shape varies with nozzle design.
b). Since, all the points approximately lie on the diagonal line, the normal assumption on the error term looks to be true (see the plot below).

Spread (variation) of residuals across nozzle groups looks approximately equal (see the plot below) and hence the constant variance assumption for the error term looks to be true.

