Ex 2-1:
$\mathrm{H}_{o}: \mu=150$ vs $\mathrm{H}_{1}: \mu>150$
Population standard deviation $\sigma$ is given and equal to $3(\sigma=3)$
Hence, the test statistic is given by
$Z=\frac{\bar{y}-\mu_{0}}{\sigma / \sqrt{n}}$.
$\bar{y}=148.75$
Computed value , $z_{0}=-0.8333$.
b). The rejection region corresponding to $\alpha=0.05$ (one-sided) is any value of $z_{0}$ larger than or equal to 1.645 .

Since, the computed value $z_{0}=-0.8333$ is not larger than 1.645 , do not reject the null hypothesis.
c). P-value is the area to the right of -0.8333 under standard normal curve, which is larger than 0.796 .
d). $95 \%$ confidence interval on $\mu$ :

$$
\bar{y} \pm 1.96 \sigma / \sqrt{n}
$$

which leads to [148.75 $\pm 1.96 * 1.5]$.
Ex-2-3
$\mathrm{H}_{o}: \mu=0.255$ vs $\mathrm{H}_{1}: \mu \neq 150$
Population standard deviation $\sigma$ is given and equal to $0.0001(\sigma=3)$
Hence, the test statistic is given by
$Z=\frac{\bar{y}-\mu_{0}}{\sigma / \sqrt{n}}$.
$\mathrm{n}=10$
$\bar{y}=0.2545$
Computed value,$z_{0}=15.81139$
b). The rejection region corresponding to $\alpha=0.05$ (two-sided) is any value of $\left|z_{0}\right|$ larger than or equal to 1.96 .

Since, the computed value $z_{0}=15.81139$ is larger than 1.645 , reject the null hypothesis.
c). P -value is the area to the right of 15.81139 plus the area to the left of -15.81139 under standard normal curve (in view of two-sided alternative), which is lvery much smaller than 0.001 .
d). $95 \%$ confidence interval on $\mu$ :

$$
\bar{y} \pm 1.96 \sigma / \sqrt{n}
$$

which leads to $[0.255 \pm 1.96 * 0.00003162278]=[0.255 \pm 0.00006198064]$.
Ex2-5:
a). $\mathrm{H}_{o}: \mu=120$ vs $\mathrm{H}_{1}: \mu>120$
b). Population standard deviation $\sigma$ is unkown. Hence the test statistic is given by
$t=\frac{\bar{y}-\mu_{0}}{s / \sqrt{n}}$, with $\mathrm{n}-1$ degrees of freedom and $\mathrm{n}=10$.
$\bar{y}=131$ and $s=19.54482$
$\mathrm{t}_{0}=1.7798, \mathrm{df}=9$. The rejection region at $\alpha=0.01$ is given by region with any value of $\mathrm{t}_{0}$ larger (one sided) than 2.821 .

Since, the computed value $\mathrm{t}_{0}=1.7798$ is not larger than 2.821 do not reject $\mathrm{H}_{0}$ at $\alpha=0.01$.
c). One-sided alternative $\mathrm{H}_{1}$. Hence, the p -value is the area to the right of 1.7798 under student-t curve with 9 d.f which gives $p$-value $=0.0544$.
d). 99 percent confidence interval: [ $110.914,151.086$ ].

Ex2-11:2
a). $\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ vs $\mathrm{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$

Test statistics: $F=\frac{S_{1}^{2}}{S_{2}^{2}}$. When $\mathrm{H}_{0}$ is true the distribution of this test statistic is $F$ with $v_{1}=9$ and
$v_{2}=9$.
From the data, $\mathrm{s}_{1}^{2}=85.822222$ and $\mathrm{s}_{2}^{2}=87.733333$. Since, $\mathrm{s}_{2}^{2}$ is larger than $\mathrm{s}_{1}^{2}$ we compute $F=\frac{S_{2}^{2}}{S_{1}^{2}}$ (which guarantees $F$ to be larger than 1).
$F_{0}=1.022268$.
From table, the critical value for $\alpha=0.05$ of $F$ with $v_{1}=9$ and $v_{2}=9$. is 3.23.
Since the computed value, $F_{0}$ is not larger than the critical value, 3.23 do not reject the null hypothesis at $5 \%$ level of significance.
p -value is larger than 0.5 .
b). $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ vs $\mathrm{H}_{1}: \mu_{1} \neq \mu_{1}$

Test statistic:
$t=\frac{\bar{y}_{1}-\bar{y}_{2}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
where $\mathrm{n}_{1}=10=\mathrm{n}_{2}$ and $\mathrm{s}_{p}$ is the pooled standard deviation (see equation 2-25 in your text) $\mathrm{t}_{0}=0.048$, with $\mathrm{df}=18, \mathrm{p}$-value $=0.9622$.
Do not reject $\mathrm{H}_{0}$ at $5 \%$ level of significance.
Ex2-12
a) and b). $H_{0}: \mu_{1}=\mu_{2}$ vs $H_{1}: \mu_{1} \neq \mu_{1}$

Test statistic:
$t=\frac{\bar{y}_{1}-\bar{y}_{2}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}$
where $\mathrm{n}_{1}=6=\mathrm{n}_{2}$.
$\mathrm{t}=-1.3498, \mathrm{df}=10, \mathrm{p}$-value $=0.2068$
For $\alpha=0.05$ do not reject $\mathrm{H}_{0}$.
c). $\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ vs $\mathrm{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$
$\mathrm{s}_{1}^{2}=0.674667$ and $\mathrm{s}_{2}^{2}=0.577667$
$F_{0}=1.167917$ with $v_{1}=5$ and $v_{2}=5$
The critical value at $\alpha=0.05$, is 5.05 . Hence, do not reject $\mathrm{H}_{0}$.
P -value is given by the area to right of 1.167917 under F-curve with $v_{1}=5$ and $v_{2}=5$
which is larger than 0.5 and hence do not reject $\mathrm{H}_{0}$.

