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In this paper, we investigate the classical and a weighted bootstrap meth-
ods for the structural relationship model with known variance ratio for an
arbitrary error distribution. Our bootstrap procedures perform well even in
comparison with the normal theory estimates in normal situations, i.e., they
have better coverage accuracy than the normal approximation.




1 Introduction

It has been generally recognized that true measurements of a characteristic
are often difficult to observe but they are observed with measurement errors.
In view of this, considerable effort has been expended on the development of
methods of analyzing data which are contaminated with measurement errors.
In this chapter, we consider a model that is related to measurement errors.
This model can be viewed as a generalization of the simple regression model,
which takes into account random measurement errors on both the dependent
and independent variables.

More precisely, we assume that two random variables U; and U, are ob-
served subject to measurement error, both are related by U, = a + BU;,
where o and [ are unknown parameters. Further, we assume that actual
observed values are X = U; + 6 and Y = U, + . The pairs (6;,¢;) are
independently distributed for different ¢’s, and J; and ¢; may or may not
be independent of each other although they are independent of (Uy;, Us;).
When U; and U, are assumed to be unknown constants, the model is known
as a functional model, whereas if the Uy;’s are independent random variables
with the same distribution the model is known as a structural model. Fuller
(1987) provided more details on these models.

It is well-known (see Kendall and Stuart, 1979 and Riersgl, 1950) that if
0 and ¢ are normally distributed, then o and 3 are unidentifiable if and only
if U; and U, are constants or U; and U, are normally distributed. Hence,
assuming normal errors and without further information,  and ( cannot
be estimated in the functional model or in the structural model. However,
if the error variance ratio A\> = ¢2/0% is known then both o and 8 can be
estimated consistently when o7 , 05 and o? are finite. The above assumption
is often satisfied if X and Y represent similar characteristics measured in the
same units, in which case A2 = 1. In other instances, information from
another independent sample, such as a preliminary study, often provides a
suitable value for A2. In the functional case where the Uy;’s are true unknown
values, Solari (1969) pointed out that the solution of maximum likelihood
equations was a saddle point. Birch (1964) and Barnett (1967) obtained
the maximum likelihood solution when both o2 and o2 were known. For
a comprehensive coverage of this work and related topics on this subject,
see for example Fuller (1987), Gleser (1981), and Chan and Mak (1983)
on a multivariate model. Lindley and El-Sayyad (1968) and Zellner (1971)
considered a Bayesian approach to these models.



Much of the interest has been focused on the estimation and testing pro-
cedure of 3. Little investigation has been devoted to bootstrap procedure for
estimating the standard error and confidence interval for . The sampling
distribution of the regression estimator [3 is skewed (see Anderson and Sawa,
1982). As a result, the large sample normal approximation as well as the
likelihood ratio chi—square approximation performs poorly for small samples.
In contrast, the bootstrap sampling distribution incorporates the skewness
of the true sampling distributions. This feature is referred to as the second-
order correctness of the bootstrap. Babu and Bai (1992) obtained a two—term
Edgeworth expansion for B for a linear functional error—in—variables model.
They showed that by using these expansions the bootstrap approximation
of the sampling distribution was superior to the classical normal approxima-
tion. Linder and Babu (1994) proposed a bootstrap procedure based on the
residuals for functional measurement error model with known error variance
ratio and symmetric errors. However, their method is cumbersome, in part,
because it involves calculations of correction factors so that the first two mo-
ments of the bootstrap estimator B* match with the usual estimates of the
first two moments of B Moreover, implementation of this approach requires
a different correction factor for each parameter. Kelly (1984) considered the
structural model with known error variance ratio from the influence function
of B and obtained an estimate of the variance of ﬁA She noted that this
method performed poorly, as the influence function estimate of the variance
was biased.

In this paper, we investigate the classical and a weighted bootstrap meth-
ods for the structural relationship model with known variance ratio for an
arbitrary error distribution. Wu (1986) first proposed the weighted boot-
strap in the context of the classical regression problem. In this procedure
iid. {t;;i =1,2,...,n} observations are drawn from an external population
having mean 0 and variance 1, independent of the original data. For the
second order accuracy of the bootstrap estimator based on this method, Liu
(1988) suggested another restriction on the external population, namely that
third central moment of ¢; must also be equal 1. This paper is divided into
three main sections. In Section 2, the method of moments is used to estimate
the parameters and some preliminary results on asymptotic properties of the
estimators are also given. Section 3 reviews the Linder and Babu method
and describes the proposed bootstrap methods along with their asymptotic
properties. In Section 4, the results of a simulation study are given.



2 The structural model

Consider the structural equations model for n random vectors Z; = (X, Y;)7.
It is assumed that for each i = 1...n, we have

2= ()= ()4 (H)=vre e

Ui = o+ BUns, (2.2)

where the U;’s are independently distributed with mean vector g and co-
variance matrix I'y, with

2 2
251 oy, Pog
= and T'y = 1 1 . 2.3
123 ( 3 ) n U ( ﬂzalzjl ) ( )

The random variables ;s are i.i.d. with mean vector 0 and covariance matrix

r§=<"§ 02> (2.4)

o
such that
N\’ = 02/0} is known. (2.5)
Further, we assume that for each ¢,
U; and §; are independent. (2.6)

Let F' denote the common distribution of the Z;’s. By (2.1)—(2.6), the
mean vector pp and covariance matrix I'p are, respectively, given by

- () (B) e

I'(F) = ( oxx(F) oxy(F) ) _ ( ofy +0i  Popy > (2.8)

oyy(F) 520(2]1 + o2

If we substitute for U; and U, from (2.1) into (2.2), we obtain

and

Y;IOz+,6X1+€1—ﬁ5,, Z:1,,’n (29)
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This is not a classical regression model since here, X is a random variable
which is correlated with the error term (¢ — 3§). From (2.3)—(2.8), we have

Covp(X,e — B6) = — B0}, (2.10)

which is 0 only if ¢} = 0, the case corresponding to the simple regression
situation, or in the trivial case # = 0. Thus, the existence of errors in both
U; and Us poses a problem quite distinct from that of conventional regression
model.

2.1 The method of moments estimators

The parameter vector @ = (o, )T can be written as a functional of the
unknown distribution function F' (see Kelly, 1984) by letting

a = aF) = py(F) — B(F)pux(F), (2.11)
B=pB(F)
1

= Sy (1) 1Y (F) = NMoxx(F) +{loxy (F) = Noxx (F)] 44X 0%y (F)}'),

(2.12)

where by definition,

uy(F)=//de(w,y),
oxx(F) = / / 2dF (z,y) - [ / / xdF(x,y)],

and the other quantities are defined in a similar fashion. Note that 3(F)
may be rewritten as

B(F) = h(F) + [R3(F) + A\?)'/2, (2.13)
with
h=h(F) = m{wy(p) — Noyx(F)}. (2.14)

Here and in what follows, for any sequences {H;} and {R;}, we use the
notation

H=n") H, Syr=n"'> (H —H)R; - R). (2.15)
=1 =1
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Let F,, denote the sample distribution function corresponding to F'. Denote
the sample mean and covariance matrix, respectively, by

w(F,) = ( if )and T(F,) = < Sxx Sxv ) . (2.16)

SYY

Under the model defined by (2.1)—(2.6), the method of moments estimator
of O(F) = (a(F), B(F))" is given by

0(F) = (a(Fn), B(F))", (2.17)
where
a=a(F,)=Y - B(F,)X, 2.18)
B = B(F,) = h(F,) + (h*(F,) + %), 2.19)
with
h = h(F,) = 5 Slxy{syy — X25xx}. (2.20)

By the law of large numbers, & and B are consistent estimators for o and
B, respectively, for all distribution functions F' with finite second moments.
When F' is bivariate normal, 8(F},) is the maximum likelihood estimator of
0(F) (see Kendall and Stuart, 1979).

Theorem 2.1. Let the model defined by (2.1)-(2.6) hold with known error
variance ratio A2 > 0 and suppose that X and Y have finite sizth moment.
Then

(1)
BrB =0 =—5 «ﬁm {13 — N — 2hyig} + O(n2). (2.21)
11
(1)
~ 52
EF(/B - /8)2 = 477,/,L2 (h2 ¥ )\2) {/1'04 + )\4/,1,40 + 2/,622(2h2 — )\2)
11
—4h(,u13 — )\2/,631)} + O(n_2). (222)



(#i) If the joint distribution of X and Y are symmetric, i.e.,
M30 = o3 = p12 = po1 = 0, then,

3
Ep(B-B)* = ! <2ML> {106 — A°ueo — 3N (124 — A’ pia2)
11

—6h[uis + Nusy — 2)\2M33] + 12h2(,uz4 - )\2,1142) - 8h3M33}
+0(n?) (2.23)

where fu = B(X — px)*(Y — iy ).
Proof. See Appendix A. O

The expression in (2.22) can also be derived from the influence function for
B; the details are given in Kelly (1984). To get an idea of the magnitude of
the bias of B, we consider that the population follows a standard bivariate
normal distribution, so that

1 1

2my/1 — p? 2(1 - p?)

P(x,y) = (2 — 2pzy +y7) | ; (2.24)

and
Mo1 = Mi2 = M3o = Moz = 0, oo = po2 = 1, 31 = piz = 3p,
pio2 = 14207,  pao = ptoa =3, paa = paz = 3+ 12p° and ps3 = 9p + 6p°.
This yields
- Bh 1 4 1—p? 3
E — = | —— — 0] ; 2.25

Denoting the first and second order approximation of the relative bias of [3

A ~

by B1(5) and By([3), respectively, we have

s Er®-B. h (17

To a second approximation, the relative bias of B can, therefore, be expressed
as

Bs(B) = B,(B) <1 - f) : (2.27)

n
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Equation (2.27) shows that the contribution of the second and third order
terms to the relative bias of § is 4/n times the value of the latter to a
first approximation. Unless n is small, the contribution can be considered
negligible.

Comparing (2.21) and (2.22), we see that both the bias and the variance
of 3 are of order n~'. Hence, for n sufficiently large, the bias is negligible as
compared to the standard error which is of the order n=/2.

The exact sampling behavior of the estimator 3 defined in (2.19) cannot
be obtained easily. Therefore, it seems necessary to use large sample theory
to develop an approximation of the distribution of B We now give the
asymptotic normal distribution of the estimators for the slope [; and intercept
&, under the general structural linear relationship (2.1)—(2.6).

Theorem 2.2. Let the model defined by (2.1)-(2.6) hold with known error
variance ratio A2 > 0 and X and Y have finite sizth moment. Then, as
n — oo,

1. n'2(6 — 6) % N(0,%), for 6 = (&, B)T, where

o3 (6% + X) + 1iSe  —p1 X

> =
— 1292 Y22
and

2
Yoo ﬁ ) {poa + A pao + 2p22(20% — N?) — 4h(p1s — Nz } -

IR AR

A~

2. Furthermore, X converges in probability to X, where

$_ [&§(62 + )‘22 + ,&%222 —@1222]
— 11299 Yoo |’

7= /(B +N), e=Yi—-a-pBX;, in =n_lsz1i,

=1 i=1

= ——————— { floa + A flao + 2f122(2h% — A?) — 4h(juns — Njiz1) },
4#%1(h2 + A?%) {

with Uy, is defined in (8.1) and fi.s is a plug-in sample moment esti-
mate, and is given by B
firs =7 Z?:1(Xi - X)(Y;-Y).
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Proof. We note that Syy, Sxx and Sxy are asymptotically unbiased and
from Kendall and Stuart (1979), we have the following results

Vare[Syy] = n"" (1os — o), Varp[Sxx] = n"" (1ao — p130),
Varp[Sxy] =n"" (a2 — 113,), Covr[Syy, Sxv] = n™ " (113 — poapt1),
Covp|Sxx, Sxy] = nfl(,u31 — poop11), Covp[Syy, Sxx| = 7171(#22 — Mo2/420)-
Because the sample moments are converging in probability to their respec-

tive population moments, we can expand [ using a Taylor series expansion
about 3 to obtain

B=P+BK +X) 2 (h—h)+ Op(n ), (2.28)
or equivalently,
n!2(3 — B) = n'2B(h — h)(h? + X*) /2 + Op(n™1/?), (2-29)
which implies that the limiting distribution of n'/2(5— ) i is the same as that
of n1/23(h — h)(h2? + X2)~1/2. The asymptotic variance of A is given by

1
EZ[Syy — \2Sxx]
Var[Sxy] B 2
E}[Sxy]  Er[Sxy|Er[Syy — A2Sxx]
(COUF[Syy, Sxy] — AM>Covp[Sxx, SXY])}

——— {131 [oa — pby — 2X% (22 — poapizo) + A*(pa0 — 13g))]

VCL’I“F(}AL) = h2 { (V(I’Y'F[Syy] — 2)\2001)F[Syy, Sxx]

+)\4VGTF[SX)(]) +

4n,u
+ 4?13, (o2 — p3y) — 211 (102 — A2 piao)
X [p1s — poapr — A (ps1 — poopnn)|} + O(n™?)

1
- Anp? {,u04 * )\4,u40 + 2“22(2h2 B )‘2) — 4h(ps — )\2U31)} + O(n 2
11

Hence the asymptotic variance of ﬁ is given by
2

m‘/arp(ib) —+ O(n_2).

VarF(B) =

Turning to Varg(é&), consider

6=Y—BX =a+0Uy+c— B0y +9)
=a— (- B +7+0,(n7Y),
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where o = £ — 36 and hence the distribution of n*/2(& — a) has the same
distribution as that of n'/2[t — (8 — B)u1)]. This yields

Varp(a) = Varp(s — (8 — B)m)
= 02(8% + \) + 12Vargp(B), (2.30)

and

~

Covp (@, B) = Covplt — (B — B)m), (B — B)m)]
= —uVarg(B). (2.31)

To show the asymptotic normality of n'/2(6 — @) and the consistency of
2 we note that 6 is a continuous differentiable function of the U-statistics
(X,Y, Sxx,Syy,Sxy).- Thus by Theorems 8 and 9 of Arvesen (1969), the
desired results follow. O

Because ¥ is a consistent estimator of Y., it follows that
t =n'/25,,*(3 - B) (2.32)

is approximately distributed as a N(0,1) random variable. In practice it
seems reasonable to approximate the distribution of (2.32) with the distri-
bution of Student’s ¢ with n — 2 degree of freedom. Instead of using n130,
to estimate Varp([f), one could use a jackknife procedure. The next section
describes a jackknife procedure.

2.2 Jackknife variance estimation

In this section, we give the jackknife variance estimator for 0 (see Kelly,
1984). Let 0_; be an estimator of @ with the i-th observation (X;, ;) omitted
and define the pseudo values

A A

6;=nb— (n—1)0_,. (2.33)
The jackknife estimator of 8 is
=n"1Y6;. (2.34)

The jackknife estimator of the variance-covariance matrix of 0 is

> 16— 6(,))[6: - 6,)]". (2.35)

n—1

EJ:
n
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_ Since & and B are continuously differentiable functions of the U-statistics
(X,Y,Sxx, Syy,Sxy) and when Ep(X*) < co and Er(Y*) < oo, by Theo-
rem 9 of Arvessen (1969), we have

nE;-250 as n— . (2.36)

3 The Linder and Babu method

Linder and Babu (1994) proposed a bootstrap method where resampling
was done by taking a sample with replacement from the residuals and then
repeating this a number of times to match the usual variance estimates.
However, in such resampling method, one needs to modify the residuals and
the usual bootstrap variance estimator.

Let Uu and Uzi denote the fitted values U;; and Us;, respectively. We
require, for every i, that A2 = (Y; — Uy;)?/(X; — Uy;)?, which in turn requires
the redefinition of the fitted values,

U = X; + i/ (A + |B|),

A L . (3.1)
Uy = &+ Uy =Y, — Xei/ (A +|6]),

where ¢; = Y; — & — 3X;.

The residuals (X; — ﬁli, Y, — [A]zz) underestimate the true error, i.e. the
mean squared of the residuals are asymptotically negatively biased for vari-
ances 62 and 62, respectively. This results from the fact that

£ =57=3"e/(n(N + ) (3.2)

is a consistent estimator for o7, see Kendall and Stuart (1979). Hence, to
estimate the error variances consistently, the residuals are adjusted by mul-
tiplying with the correction factor d, = (A +|8])/ (A2 + 32)!/2, resulting in a
set of “pseudo” residuals

r; = —ei/()\2 + 32)1/2’

N 3.3
S; = )\6,/()\2 —+ B2)1/2 - —)\T'i. ( )

We now describe the Linder and Babu bootstrap algorithm
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. Given data set (X;,Y;),4=1,...,n and the estimator 3 as defined in
(2.19) for slope, compute the fitted values (Uy;, Uy;),i = 1,... ,n using
(3.1).

. Resample 5;‘ with replacement from the set ¢,{ry,...,r,}, where r; are

given (3.3) and ¢, = BS(LUI/SXY-

. Independently of (2), resample é; with replacement from the set

cn{s1, .-,
Sn}, where s; are given by (3.3) and ¢, is the same as in step (2).

. Obtain bootstrap estimate 3* which is the analogue of 3 as in (2.19)
from the replicate data (X}, Y;).

. Repeat steps (1)—(5) above B times, where B is large, typically between
100 and 1,000.

. Calculate estimates of Varp(3) by

B
var, (B -1 Z

b=1
. In the b-th run, calculate the bootstrap-t, defined as
t; = (65 — B)/\/ *(6%),
where Bg is the analogue of B computed in b-th bootstrap sample and
®*(3*) is the bootstrap estimate of the variance of 5* given by
&*(5*) = var,(6*) + n~1 ¥
where ¥ = 4X53%s*kur (62 + A2) %5 * and
n-1SD* — 6)232s%
kur = = —
(Bt + A)st
with SD* = 37 e, & = i1/ and s? given by (3.2).
Remark: Linder and Babu (1994) noted that under this bootstrap pro-

cedure the usual variance estimator given in Step 6 above was not a proper es-
timator of Varp(3). Hence they suggested to use ®*(3*) = var,(5*) +n~ 1.
The computation of ¥ involves the fourth moment of residuals. To avoid
this “after” correction, we propose two new bootstrap procedures where the
usual bootstrap variance estimator is a valid estimator of Varg(6).

12



3.1 The proposed bootstrap procedure

The bootstrap procedure proposed here for the structural model differs from
the classical method in that it does not resample the data (X;,Y;) directly.
Instead it starts with an estimating function for the parameter and indepen-
dently resamples residuals in that function. We assume the conditions in
Theorem 2.1 hold and that h has a first order continuous derivative around
h = h(uosz, t20, 11)- By a multivariate Taylor series expansion of iL, we have

. 1 ) ) ) ~
h=h+ 5/1;11{(#02 — po2) — A2 (fiz0 — p20) — 2h(f11 — pa1)} + Op(n™")
1 . . . _
=h+ 5#1_11{%2 — XNfizg — 2k} + Op(n ). (3.4)

We re-express (3.4) as

h = h+ ,U11 Z{ Y, -Y)? )\2(Xz‘—X)2_2h(Xi_X)(Yi_}_/)}'i'Op(”il)

—h+ —un Z{ — X2(5; — §)% — 2h(e; — &)(6; — B)
+ 2’7U1,'( i — 6) — QWﬁUH(CS' — g)} -+ Op(n_l)
=h+—,u11 ZA + Oy( (3.5)

where 4; = (V; = Y)? = ¥*(X; — X)* —2h(X; = X)(Y; = Y) and vy = 8 — h.
Define

+ 24085 — &) — 24804(5; — 3). (3.6)

where ¥ = B — h. Equation (3.5) suggests that our bootstrap estimator for
h is

b = Mﬁﬂu ZA (3.7)

and using (2.12) that for 3 is
B = h* + (h* + A2)'/2, (3.8)

13



where if, = n 13" (XF — X)(Y;* — V). Note that 3.7, A; = 0. We now
describe the resampling algorithm for the slope parameter in the structural
linear relationship (2.1)—(2.6).

1.

Given a data set (X;,Y;), i =1,...,n and the estimator (2.19) for the
slope of the model, compute the fitted values (U, Us) using (3.1).

Resample 3;*, with replacement from the set {ry,...,r,}, where r; are
given in (3.3).

. Independently of step (2), resample &} at random with replacement

from the set {s1,...,s,}, where s; are given in (3.3).

Compute A? = (67 — £)2 — \2(3 — 8)2 — 2h(&} — &) (67 — ) + 24T (¢r —
&) — 23BU (57 - b).
Compute
h* = M11U11 ZA (3.9)
B =h*+ (h2* + /\2)1/2, (3.10)
where 4}, =n7 1Y 0 (X — X)(Y-Y).

Repeat steps (1)-(5) above a large number of times, B, to obtain
Bis- - Bp-

Calculate estimate of Varp(3) with
var,(5*) = E.(8* — E.3*)?, (3.11)

where F, denotes expectation with respect to bootstrap sampling which
can be approximated by

B
var,(6*) = -t Z 3% (3.12)

b=1

where ﬁ() =8 B:/B.
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8. In the b-th run, calculate the bootstrap-t:

t;:M, b=1,...,B (3.13)
vary(5;)

where varj(B{f) is the jackknife variance estimator of B; given by

* [ D% n—1 . Ax (1 2
var3(By) = ——=> (5" - B (3.14)
i=1
with ﬁz(i) being the estimator of the same functional form as B;, but
computed from the reduced sample of size n — 1 obtained by omitting
the i-th observation.

The asymptotic distribution of the bootstrap estimator proposed above
is given in the following two theorems.

Theorem 3.1. In the structural relationship (2.1)-(2.5), we assume E(X°+
Y®) < co. Then, n'/?(3* — ) converges in distribution to a normal random
variable with zero mean and variance 222, where ﬁ is the bootstrap estimator

of ﬁ resulting from the proposed resampling procedure in Section 3.1, and S
as defined in (2.28).

Proof. Let A* =n~' 3" | A* where A is defined in step (4) in the proposed
bootstrap procedure above and write

i A

h*
11 2,U11

(3.15)

We observe that A* is the mean of an i.i.d. sample with population mean A,
where A = n! Sy A;. Then, by the central limit theorem, we have

V(A — 4) % N(0,6%), (3.16)
with

&j:—ZA A)?
:E;Af—Az

= floa + M fiao + 2/122(2h2 — N2) — 4h(fis — Njiz) + op(n 1) (3.17)

15



By the law of large numbers /7, TS f111 and by Slutsky’s theorem, we have

V(' = k) =

Vn(A* — A) (3.18)

2f11
which implies that
~ - 1
Va(h* —h) % N0, —53%). (3.19)
417y
We conclude that n'/2(3* — ) converges to N(0, 35,) in distribution by
the delta method (see Bishop, Fienberg, and Holland, 1975). O

Theorem 3.2. Assume the conditions of Theorem 3.1 hold. Then, under
the proposed sampling procedure described in Section 3.1,

(i) Er[B.(8" - B)] = —Er(8 - B) + O(n7?).

In addition, if the joint distribution of X and Y is symmetric, we have
(i) ErlE.(6" — 8)"] = Er(B - 6)* + O(n"2) and
(i6i) Er[E.(5" — 6)*] = Ex(B - B)* + O(n~%),

where E, represents expectation with respect to the distribution induced by
bootstrap sampling described in Section 3.1.

Proof. See Appendix B. O

3.2 The weighted bootstrap

Wu (1986) proposed a weighted bootstrap method in the context of classical
regression Generally, the method entails first taking i.i.d. samples {¢;;¢ =
1,2,...,n} from an external population having mean 0 and variance 1 and
then generating bootstrap data by setting

Yy, = il:zTB +tie;, 1=12,...,m, (3.20)

where x; is a p X 1 deterministic vector, ,3 is the p x 1 vector of least squares
estimators of 3 and e; = y; — 73. Liu (1988) suggested that another re-
striction needed to be imposed on t; namely, E(t}) = 1, to modify Wu’s
bootstrap procedure to share the usual second order asymptotic properties
of the classical bootstrap. We begin by using the idea of the weighted boot-
strap to construct a bootstrap procedure in the context of measurement error
model. We describe below the weighted resampling algorithm for the slope
parameter in the structural linear relationship (2.1)—(2.6).
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. Generate D;,7 = 1,... ,n; i.i.d. random variables with gamma distri-
bution having density gp(z) = [p?/(¢—1)!]z? ‘e P*Iz-0}, where p = 2
and g = 4.

. Compute the bootstrap data, fori =1,... ,n

e = fios + t[(Y; — ¥)? = jioa), (3.21)
ﬂ;(()z) = fiao + t:i[(Xi — X)? — fiao), (3.22)
A1 = i+ 4](X - X) (Y= V) — a, (3.23)

where t; = Dz — E(D,)
. Obtain bootstrap estimates a3, = n=2 S, asd), ag, = n 12" ed)

and g, = n 31 218 computed from the bootstrap data fifs) fis

and 29, respectively.

. Obtain bootstrap estimates h* and B* along the lines of h and B

. Repeat steps (1)-(5) above a large number of times, B, to obtain

Bis- - Op-

. Calculate estimate of standard error of 3* with

var(ﬁ) = Et(B* — EtB*)Z, (3.24)

where E; denotes expectation with respect to the weighted bootstrap
sampling which can be approximated by

B

var(B*) = (B-1)7"> (B - By)”, (3.25)

b=1
where B(*) =37, 3;/B.
. In the b-th run, calculate the bootstrap-t, defined as
tZ:L_ﬁA, b=1,...,B, (3.26)
vary(By)

17



where vart(B;) is the bootstrap variance applied to b-th bootstrap sam-
ple and given by

A 5 2 42
vary(By) = = tiA;. 3.27
B = i+ ) 2 320

Asymptotic properties of the weighted bootstrap estimators are given in
the next two theorems.

Theorem 3.3. In the structural relationship (2.1)-(2.5), we assume E(X°®+
V) < co. Then, n'/?(8* — () converges in distribution to a normal random
variable with zero mean and variance 222, where ﬁ* 1s the bootstrap estimator

of ﬁ resulting from the proposed resampling procedure in Section 3.2 and P
is as defined in (2.28).

Proof. Consider

- A 1 1
h* — h nx o )\ZA* _ )\
+ 2—,@’{1 (/%2 Mzo) 2 (,U02 Mzo)
1 R "
= —(f15p — Nfi5o — 2h5,) — 5 (o2 — A’fiao — 2hj2
20, (Moz fog — :ull) 2% (,Uoz H20 Mll)a

or equivalently, we have

- A 1 N 1 R
h*—h=—/(j N 2hit,) — ——(figa — N fusg — 2hj1
201, (Moz o — Mn) 201 (,U02 H20 /~t11)
I . . . Sow Ay Hat
= A—{(Noz - N02) - )‘2(,“20 - N20) - 2h(#11 - #11)} ¥
2fin P

(floz — A fiz0 — 2hjly1) — (floz — A2fizo — 2Ry ).

243 2fi1

Since fi%, is the mean of i.i.d samples, by the law of large numbers ji*; =
f111 and by Slutsky’s theorem, we have

7 % 7 n ~ % A ~ % A~ 7 (A% ~
Vil = B £ 5y — ) = X0 ) — 205, — )} (328)
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and

Ey(figo — f102)? = n™" (floa — i13p), (3.29)
By(fi30 — fi20)® = n™" (f1ao — figa), (3.30)
Ey(fi5; — ) = " (fize — f13,), (3.31)
Ey(figo — fio2) (i3 — fiao) = n™" (fizz — flozfia0), (3.32)
Ey(fgy — flo2) ({15, — fa1) = n~ " (fias — fozfinn), (3.33)
Ey(fi5g — f20) (fity — fa1) = " (fiar — fiaofin1)- (3.34)
We have
A ~ 1
Va(ht —h) % N(0, =-52), (3.35)
4411,

with 6% is given by (3.17). We conclude that n'/2(3* — B) converges in
distribution to N(0,Xs3), where Xy is given by (2.28) by the delta method
(see Bishop, Fienberg, and Holland, 1975). O]

Theorem 3.4. Assume the conditions of Theorem 3.3 hold. Then, under
the proposed weighted sampling procedure described in Section 3.2,

(i) EpE,(6*— B)] = Er(6— B) + O(n™2),
(i) Ep[E(3* — B)*] = Er(B — B)> + O(n?),
(1) EF[Et(B* - 3)3] = EF(B - B2 +0(n?),

where E; represents the expectation with respect to the distribution induced
by bootstrap sampling described in Section 3.2.

Proof. See Appendix C. O

4 A simulation study

This section describes a simulation study which compares the performance of
the proposed resampling methods to various other methods. Along the lines
of simulation study done by Linder and Babu (1994), a total of 12 different
cases are used to generate data sets from (2.1) and (2.2) with n = 20, 30,
a=1,8=2and A2 = 1. The Uy,’s are generated according to the following
four “design” distributions:
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1. Uniform(1.5,8.5),

2. Normal(5,4),

3. (5-v/2) + v2W, where W is chi-square(1),

4. (2/3)N(4,2.5) + (1/3)N(7,26) (mixture normal).

For each design, independent pairs of errors (4;,¢;) are generated according
to the following distributions:

1. N(0,0.48),
2. Double exponential(0.49) i.e. with density f(d) = 1.02 exp(—|6|/0.49),
3. Contaminated normal: 0.1N(1.8,0.84) + 0.9N(—0.2,0.04)

4. “Moderate” heteroscedastic normal: (d;,¢;) ~ {0.4N(0,1);i=1,...,5},
{0.6N(0,1);i=6,...,10}, {0.8N(0,1);i = 11,...,15},
{N(0,1);i = 16,...,20} for n = 20 and (6, &) ~ {0.4N(0,1);i =
1,...,6}, {0.6N(0,1);i = 7,...,12}, {0.8N(0,1);i = 13,...,10},
{N(0,1);5=20,...,25}, {N(0,1);i = 26,...,30} for n = 30.

5. “Heavy” heteroscedastic normal: (&;,¢;) ~ {N(0,1);7 = 1,...,10},
{2.0N(0,1);¢ = 11,...,20} for n = 20 and (&;,&;) ~ {N(0,1);i =
1,...,15}, {2.0N(0,1);7 = 16,...,30} for n = 30.

For every case, Monte Carlo expectations are computed based on N =
10, 000 simulations. Within each simulation, Monte Carlo expectations with
respect to bootstrap are computed based on B = 1,000 bootstraps. The
absolute bias of B and the confidence intervals for 3 are calculated as follows:

1. Normal Approx. : Absolute bias = N ! ETJLI |/3’n—ﬁ |. Large sample
confidence interval for the linear structural error model:

N

B+ Z1—aj2\/ varg(B)

where z1_q/2 is the 1 — « /2 percentile of the standard normal distribu-
tion and var(8) = n 'S4, with Sy, given by (2.28).

For the next three bootstrap methods, the absolute bias of B is com-
1N B |4
puted as (NB)™ 1> >0 [Bu — B
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2. LINDER & BABU: The 100(1 — o) % confidence interval for g is
given by

~

5= 600 vare(),B - €57 uare(3)]

where tz(/LQB) and t’l‘(_LO% are the percentiles of the histogram of the Stu-

dentized values

3. PROPOSED METHOD 1: The 100(1 — a) % confidence interval
for 3 is given by

156, vars(9),6 - £33 uars(5)|.

*(1)

where t:;(/lg and t),,

dentized values

po - =8 .y p

Vvars(87)

and var* (6;) is the jackknife variance estimator of §* in the b-th boot-
strap sample and given by (3.27).

, are the percentiles of the histogram of the Stu-

4. PROPOSED METHOD 2: The 100(1 — a) % confidence interval
for 3 is given by

1562 vars ()6 - £ uars(5)|.
*(2) 2)

where ¢ /9 and t:ga /o are the percentiles of the histogram of the Stu-
dentized values

tZ(Q):i(ﬁb_ﬁ) , b=1,...,B,

vary(6;)

and vart(B;) is the bootstrap variance estimator of 3* in the b-th boot-
strap sample and given by (3.27).
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For each of N = 10, 000 simulations, we compute 90%, 95% and 99% con-
fidence limits for # and their lower and upper tail frequencies (in percents).
The tail frequencies represent tail probabilities and hence, the coverage prob-
abilities of the confidence intervals. We also compute the confidence lengths
(median). The following summaries are reported in Tables 1-14 and are
calculated according to the above methods.

LOW: Error rate in the lower tail defined by

Normal Approx. : S~ I1..(8)/N, where Liy = (B,-—za/zy/varp(ﬁi),oo).
The three bootstrap methods are given by SN, I,(6)/N, where L; =

(Bi — a2 varg(B;),00) and I4(-) in an indicator function defined by

IA(JZ):{I zeA

0 otherwise.

UP: Error rate in the upper tail defined by
Normal Approx. : Zf\il Iy« (B)/N, where

Uy = (=00, 5 + za/zwvarp(ﬁi)). The three bootstrap methods are given

by Zf\; IU@'(/B)/N’ where U; = (—OO,Bi - t:;/2 UaTF(Bi))-
CP: The coverage probability defined by

Normal AppI'OX. : Z;’\il ICiN (6)/N7 where Cz'N = (Bi_za/2 'UG/’"F(,BAi), B’L+
Za)2 varp(B;)). The three bootstrap methods are given by Zfil Ic,(B)/N

where C, = (ﬁ € (B, — t:—a/2 'varF(ﬁA,-),ﬂAi — t;;/2” ’UCL’I“F(B,')) with t;—a/2 =
x(LB) (1) x(2) x _ x(LB) ,x(1) x(2)
by a/2r tia and b a2 and tas2 =tas2 tap and tayo-

LGT: The median length of confidence intervals.

4.1 Summary of findings and conclusions

Table 15 reports the summary of the findings from Tables 1-14. For n =
20 the coverage probabilities for 90% are in the range of 81.23-87.55% for
Normal Approx., 86-89.94% for Linder and Babu’s method, 89.93-91.78%
for proposed method 1 and 89.65-93.56% for proposed method 2. For 95%,
they are in the range of 87.33-92.64% for Normal Approx., 92.86-95.16% for
Linder and Babu’s method, 94.98-97.32% for proposed method 1 and 93.60—
97.03% for proposed method 2. For 99% coverage probability, they are in
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the range of 94.65-97.66% for Normal Approx., 98.22-99.07% for Linder and
Babu’s method, 98.88-99.33% for proposed method 1 and 97.72-99.54% for
proposed method 2. Similarly, the coverage probabilities for n = 30 are in
the same range.

The obvious conclusion to be drawn from Tables 11-14 is that the tra-
ditional large sample intervals are not corrected for the skewness of the dis-
tribution of B Its coverage probabilities are understated by their respective
nominal rates. Our bootstrap procedures perform well throughout even in
comparison with the normal theory estimates in normal situations, i.e., they
have better coverage accuracy than the normal approximation. The tail
errors rates show that all bootstrap methods result in heavier upper tail
indicating a skewed distribution of 3 with a long tail to the left. This sug-
gests that the use of bootstrap histograms to construct confidence interval is
more appropriate. The weighted bootstrap tends to have inflated coverage
probabilities and have long lengths, the reason being that the jackknife is
not resistant to extreme values and perhaps data should be trimmed before
jackknifing. It is not surprising that Linder and Babu’s method does well
here since they applied a correction factor in the bootstrap which makes their
methods less appealing than ours, see remark on page 12. Another disadvan-
tage of this method is that it is substantially more computer intensive than
our proposed methods .

For the case of heteroscedastic errors, we present simulation results only
for the case of uniform design with normal error distribution. These re-
sults appear to be robust against heteroscedascity and are enough to suggest
that our methods are ahead compared to others in attaining their respective
nominal coverage levels, as Tables 13—-14 show.
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Table 1: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is uniform with normal error
distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 443 876 86.81 0.539 0.139
APPROX. 095 | 239 5.76 91.85 0.642 0.139
0.99 | 0.56 2.51 96.93 0.844 0.139

30 090 | 476 7.59 87.65 0.441 0.112

095 | 241 458 93.01 0.526 0.112

099 | 055 2.04 9741 0.691 0.112

LINDER 20 090 | 3.29 7.58 89.13 0.583 0.196
& BABU 095 | 1.70 3.75 94.55 0.718 0.196
099 | 0.48 0.82 98.70 1.025 0.196

30 090 | 3.03 824 88.73 0.455 0.163

095 | 1.54 430 94.16 0.554 0.163

099 | 0.39 1.00 98.61 0.769 0.163

PROPOSED 20 0.90 | 1.34 7.56 91.10 0.643 0.196
METHOD 1 095 | 055 3.82 9563 0.794 0.196
099 | 0.11 0.87 99.02 1.122 0.196

30 090 | 1.29 8.64 90.07 0.492 0.163

095 | 0.46 4.52 95.02 0.601 0.163

099 | 0.07 1.20 98.73 0.833 0.163

PROPOSED 20 0.90 | 2.67 7.25 90.08 0.605 0.132
METHOD 2 095 | 1.17 479 94.04 0.714 0.132
099 | 0.26 198 97.76 0.946 0.132

30 090 | 3.19 6.92 89.89 0.474 0.107

095 | 1.49 4.38 94.13 0.556 0.107

099 | 0.30 1.92 97.78 0.723 0.107
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Table 2: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of B The design is uniform with double expo-
nential error distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 5.00 8.57 86.43 0.526 0.143
APPROX. 095 | 246 543 92.11 0.627 0.143
0.99 | 0.60 2.08 97.32 0.824 0.143

30 090 | 471 7.39 87.90 0.435 0.115

095 | 2.31 4.48 93.21 0.518 0.115

099 | 0.46 1.53 98.01 0.681 0.115

LINDER 20 090 | 3.81 7.29 88.90 0.563 0.199
& BABU 095 | 1.87 3.42 94.71 0.686 0.199
099 | 0.45 0.64 9891 0.966 0.199

30 090 | 3.17 7.86 88.97 0.446 0.165

095 | 1.59 4.14 94.27 0.541 0.165

099 | 0.41 0.69 98.90 0.740 0.165

PROPOSED 20 090 | 144 7.11 91.45 0.623 0.199
METHOD 1 095 | 0.60 3.23 96.17 0.761 0.199
099 | 0.11 056 99.33 1.065 0.199

30 090 | 1.25 8.00 90.75 0.486 0.165

095 | 0.49 4.26 95.25 0.589 0.165

099 | 0.11 0.78 99.11 0.807 0.165

PROPOSED 20 0.90 | 2.65 6.85 90.50 0.590 0.132
METHOD 2 095 | 1.20 4.18 94.62 0.694 0.132
099 | 0.33 1.49 98.18 0.920 0.132

30 0.90 | 3.08 6.51 90.41 0.469 0.108

095 | 1.51 4.07 94.42 0.550 0.108

099 | 022 129 9849 0.714 0.108
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Table 3: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of B The design is uniform with contaminated
normal error distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 6.72 6.99 86.29 0.069 0.018
APPROX. 095 | 3.82 4.17 92.01 0.082 0.018
099 | 1.36 1.50 97.14 0.108 0.018

30 090 | 6.74 6.49 86.77 0.058 0.015

095 | 3.61 3.74 92.65 0.069 0.015

099 | 1.05 1.28 97.67 0.091 0.015

LINDER 20 090 | 490 5.16 89.94 0.077 0.022
& BABU 095 | 249 235 95.16 0.094 0.022
099 | 0.60 0.60 98.80 0.133 0.022

30 090 | 5.15 5.29 89.56 0.063 0.019

095 | 245 2.69 94.86 0.076 0.019

099 | 0.65 0.59 98.76 0.105 0.019

PROPOSED 20 0.90 | 3.85 4.69 91.46 0.082 0.075
METHOD 1 095 | 1.95 210 9595 0.100 0.075
099 | 0.45 0.46 99.09 0.142 0.075

30 090 | 433 491 90.76 0.065 0.070

095 | 2.06 245 9550 0.079 0.070

099 | 0.43 0.55 99.02 0.109 0.070

PROPOSED 20 0.90 | 497 538 89.65 0.076 0.016
METHOD 2 095 | 3.056 3.35 93.60 0.089 0.016
099 | 1.14 1.14 97.72 0.117 0.016

30 090 | 5.26 5.59 &89.15 0.062 0.014

095 | 3.07 323 93.70 0.073 0.014

099 | 093 1.17 9790 0.095 0.014
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Table 4: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is normal with normal error
distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 5.30 9.83 84.87 0.543 0.148
APPROX. 095 | 296 6.74 90.30 0.647 0.148
099 | 0.83 3.15 96.02 0.850 0.148

30 090 | 5.45 850 86.05 0.440 0.115

0.95 | 2.89 5.57 91.54 0.525 0.115

099 | 0.79 2.20 97.01 0.689 0.115

LINDER 20 090 | 341 7.63 88.96 0.628 0.207
& BABU 095 | 1.87 397 94.16 0.768 0.207
099 | 0.54 0.76 98.70 1.080 0.207

30 090 | 3.20 8.69 88.11 0.470 0.168

095 | 1.78 4.40 93.82 0.575 0.168

099 | 0.53 092 9855 0.808 0.168

PROPOSED 20 0.90 | 1.43 7.75 90.82 0.674 0.207
METHOD 1 095 | 0.75 399 9526 0.836 0.207
099 | 0.12 0.81 99.07 1.192 0.207

30 090 | 1.57 8.94 89.49 0.508 0.168

095 | 0.63 4.75 94.62 0.623 0.168

099 | 0.10 1.06 98.84 0.872 0.168

PROPOSED 20 0.90 | 2.59 7.21 90.20 0.659 0.141
METHOD 2 095 | 1.20 4.50 94.30 0.791 0.141
099 | 0.22 152 9826 1.110 0.141

30 090 | 3.22 6.93 89.85 0.503 0.110

095 | 1.40 4.29 9431 0.597 0.110

099 | 0.34 142 9824 0.807 0.110
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Table 5: Comparison of tail coverage, coverage (%), length of confidence in-
tervals and absolute bias of 3. The design is normal with double exponential
error distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 494 9.36 85.70 0.549 0.155
APPROX. 095 | 245 6.09 91.46 0.655 0.155
099 | 0.71 252 96.77 0.860 0.155

30 090 | 5.12 7.73 87.15 0.439 0.116

095 | 2.68 480 92.52 0.524 0.116

099 | 059 1.61 97.80 0.688 0.116

LINDER 20 090 | 3.39 7.23 89.38 0.608 0.220
& BABU 095 | 1.65 3.62 94.73 0.750 0.220
099 | 0.40 0.60 99.00 1.074 0.220

30 090 | 3.35 8.03 88.62 0.462 0.172

095 | 1.69 396 9435 0.561 0.172

099 | 0.44 0.72 98.84 0.778 0.172

PROPOSED 20 0.90 | 1.38 7.01 91.61 0.603 0.220
METHOD 1 095 | 0.65 3.50 95.85 0.733 0.220
099 | 0.15 0.63 99.22 1.053 0.220

30 090 | 1.39 8.22 90.39 0.502 0.172

095 | 0.55 4.17 95.28 0.610 0.172

099 | 0.10 0.71 99.19 0.844 0.172

PROPOSED 20 0.90 | 2.05 6.21 91.74 0.673 0.153
METHOD 2 095 | 0.98 3.64 9538 0.810 0.153
099 | 0.15 1.17 98.68 1.145 0.153

30 090 | 2.69 5.81 91.50 0.501 0.112

095 | 1.14 3.35 95.51 0.597 0.112

099 | 023 099 98.78 0.802 0.112
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Table 6: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of B The design is normal with contaminated
normal error distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 6.97 7.83 85.20 0.072 0.019
APPROX. 095 | 426 4.96 90.78 0.086 0.019
099 | 147 201 96.52 0.113 0.019

30 090 | 6.59 7.55 85.86 0.058 0.015

095 | 3.89 454 91.57 0.070 0.015

099 | 1.21 1.66 97.13 0.091 0.015

LINDER 20 090 | 471 5.42 89.87 0.084 0.018
& BABU 095 | 242 280 94.78 0.104 0.018
0.99 | 0.58 0.51 9891 0.149 0.018

30 090 | 470 5.82 89.48 0.065 0.019

095 | 2.25 2.87 94.88 0.080 0.019

099 | 0.66 0.72 98.62 0.111 0.019

PROPOSED 20 0.90 | 3.74 4.75 91.51 0.090 0.050
METHOD 1 095 | 1.76 2.39 95.85 0.111 0.050
099 | 0.34 0.46 99.20 0.161 0.050

30 090 | 414 5.39 90.47 0.068 0.037

095 | 1.93 2.60 9547 0.083 0.037

099 | 0.50 0.68 98.82 0.117 0.037

PROPOSED 20 0.90 | 4.60 5.32 90.08 0.085 0.018
METHOD 2 095 | 2.77 3.34 93.89 0.102 0.018
099 | 0.72 1.056 98.23 0.139 0.018

30 090 | 472 5.51 89.77 0.059 0.014

095 | 2.63 3.09 94.28 0.071 0.014

099 | 0.86 0.96 98.18 0.100 0.014
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Table 7: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is chi-square with normal error
distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 7.68 9.89 82.43 0.364 0.106
APPROX. 095 | 487 7.00 88.13 0.434 0.106
0.99 | 1.58 3.43 9499 0.571 0.106

30 090 | 710 9.62 83.28 0.319 0.090

095 | 417 6.34 89.49 0.380 0.090

099 | 1.40 291 95.69 0.499 0.090

LINDER 20 090 | 391 6.51 89.55 0.457 0.142
& BABU 095 | 1.94 335 94.71 0.565 0.142
099 | 0.37 0.76 98.87 0.812 0.142

30 090 | 3.33 7.67 89.00 0.376 0.126

095 | 1.76 4.03 94.21 0.462 0.126

099 | 0.39 092 98.69 0.648 0.126

PROPOSED 20 0.90 | 245 6.20 91.35 0.502 0.142
METHOD 1 095 | 1.06 3.15 97.32 0.629 0.142
099 | 0.21 0.68 99.11 0.914 0.142

30 090 | 2.31 7.74 89.95 0.404 0.126

095 | 1.06 4.19 94.75 0.501 0.126

099 | 0.25 1.03 98.72 0.709 0.126

PROPOSED 20 0.90 | 2.62 4.94 92.44 0.555 0.116
METHOD 2 095 | 1.13 2.67 96.20 0.706 0.116
099 | 0.12 0.57 99.31 1.198 0.116

30 090 | 2.78 5.12 92.10 0.442 0.091

095 | 1.18 2.77 96.05 0.547 0.091

099 | 0.15 0.65 99.20 0.828 0.091
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Table 8: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of B The design is chi-square with double expo-
nential error distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 729 9.83 82.88 0.345 0.102
APPROX. 095 | 446 6.61 8893 0.411 0.102
0.99 | 1.55 3.00 9545 0.540 0.102

30 090 | 7.07 861 84.32 0.292 0.084

095 | 412 549 90.39 0.348 0.084

0.99 | 1.32 2.03 96.65 0.457 0.084

LINDER 20 090 | 4.04 6.43 89.53 0.419 0.136
& BABU 095 | 222 3.20 94.58 0.517 0.136
0.99 | 0.59 0.65 98.76 0.742 0.136

30 090 | 3.39 6.49 90.12 0.340 0. 117

095 | 1.72 3.13 95.15 0.417 0. 117

0.99 | 0.40 0.533 99.07 0.584 0. 117

PROPOSED 20 090 | 2.76 5.79 91.45 0.459 0.136
METHOD 1 095 | 1.29 295 95.76 0.574 0.136
099 | 0.33 0.56 99.11 0.835 0.136

30 090 | 2.66 6.20 91.14 0.361 0.117

0.95 | 1.05 3.27 95.68 0.449 0.117

0.99 | 0.23 0.59 99.18 0.642 0.117

PROPOSED 20 0.90 | 2.77 433 9290 0.509 0.121
METHOD 2 095 | 1.39 242 96.19 0.639 0.121
0.99 | 0.24 0.53 99.23 1.042 0.121

30 090 | 2.3 3.90 93.37 0.418 0.091

095 | 1.20 1.72 97.08 0.523 0.091

099 | 0.15 0.26 99.59 0.812 0.091
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Table 9: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of B . The design is chisquare with contaminated
normal error distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 924 953 81.23 0.048 0.014
APPROX. 095 | 6.16 6.51 87.33 0.057 0.014
0.99 | 252 2.83 94.65 0.075 0.014

30 090 | 7.84 810 84.06 0.040 0.011

0.95 | 5.04 4.87 90.09 0.047 0.011

099 | 206 1.66 96.28 0.062 0.011

LINDER 20 090 | 496 5.13 89.91 0.063 0.018
& BABU 095 | 241 247 95.12 0.078 0.018
0.99 | 0.51 0.42 99.07 0.111 0.018

30 090 | 477 4.78 90.45 0.048 0.014

0.95 | 249 2.07 9544 0.059 0.014

099 | 0.63 0.37 99.00 0.082 0.014

PROPOSED 20 0.90 | 3.91 4.58 91.51 0.069 0.049
METHOD 1 0.95 | 1.87 2.05 96.08 0.088 0.049
099 | 0.39 0.32 99.29 0.128 0.049

30 090 | 420 4.47 91.33 0.051 0.048

095 | 2.04 195 96.01 0.036 0.048

099 | 0.52 0.34 99.14 0.090 0.048

PROPOSED 20 0.90 | 3.76 3.96 92.28 0.076 0.016
METHOD 2 095 | 1.76 1.67 96.57 0.097 0.016
099 | 0.26 0.20 99.54 0.169 0.016

30 090 | 4.01 3.85 92.14 0.054 0.011

095 | 2.14 1.81 96.05 0.067 0.011

099 | 0.47 030 99.23 0.100 0.011
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Table 10: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 4. The design is mixture normal with normal
error distribution for N=10,000 simulations and B=1,000 bootstrap samples.

METHOD n 1—a|LOW UP CP LGT BIAS

NORMAL 20 090 | 5.78 10.04 84.18 0.538 0.148
APPROX. 095 | 3.34 6.81 89.85 0.642 0.148
099 | 1.00 3.20 95.80 0.843 0.148

30 090 | 5.52 843 86.05 0.441 0.117

0.95 | 2.88 559 91.53 0.526 0.117

099 | 0.77 228 96.95 0.691 0.117

LINDER 20 090 | 3.65 7.77 8885 0.616 0.208
& BABU 095 | 201 3.88 9411 0.765 0.208
099 | 049 0.74 98.77 1.111 0.208

30 090 | 298 846 88.56 0.475 0.169

095 | 1.61 435 94.04 0.581 0.169

099 | 048 090 98.62 0.819 0.169

PROPOSED 20 090 | 1.77 7.81 90.42 0.680 0.208
METHOD 1 095 | 0.74 4.03 95.23 0.845 0.208
099 | 0.14 0.73 99.13 1.210 0.208

30 090 | 1.45 876 89.79 0.513 0.169

095 | 0.64 460 9476 0.632 0.169

099 | 0.17 1.07 98.76 0.885 0.169

PROPOSED 20 0.90 | 2.65 6.84 90.51 0.675 0.142
METHOD 2 095 | 1.26 424 9450 0.818 0.142
0.99 | 0.22 1.27 9851 1.178 0.142

30 090 | 3.03 6.64 90.33 0.511 0.111

095 | 1.40 4.00 94.60 0.610 0.111

099 | 0.39 142 9819 0.828 0.111
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Table 11: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of B The design is mixture normal with er-
ror double exponential distribution for N=10,000 simulations and B=1,000
bootstrap samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 5.90 9.43 84.67 0.519 0.147
APPROX. 095 | 3.15 6.18 90.67 0.618 0.147
0.99 | 0.69 2.48 96.83 0.813 0.147

30 090 | 540 7.96 86.64 0.428 0.115

095 | 287 4.61 9252 0.510 0.115

099 | 0.61 154 97.85 0.670 0.115

LINDER 20 090 | 3.85 7.12 89.03 0.581 0.207
& BABU 095 | 1.92 3.56 94.52 0.715 0.207
099 | 031 0.71 98.98 1.027 0.207

30 090 | 3.39 8.05 88.56 0.453 0.166

095 | 1.83 3.68 94.49 0.550 0.166

0.99 | 0.47 0.67 98.86 0.762 0.166

PROPOSED 20 090 | 1.74 6.92 91.34 0.639 0.207
METHOD 1 095 | 0.74 3.36 9590 0.789 0.207
0.99 | 0.07 0.60 99.33 1.126 0.207

30 090 | 1.65 816 90.19 0.490 0.166

095 | 0.71 3.77 95.52 0.597 0.166

099 | 0.14 0.75 99.11 0.823 0.166

PROPOSED 20 0.90 | 248 6.05 91.47 0.648 0.144
METHOD 2 095 | 1.10 348 9542 0.783 0.144
099 | 0.20 1.02 9878 1.125 0.144

30 090 | 2.72 5.54 91.74 0.492 0.110

095 | 1.15 3.15 95.70 0.586 0.110

099 | 0.30 0.84 98.86 0.794 0.110
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Table 12: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is mixture normal with contam-
inated error distribution for N=10,000 simulations and B=1,000 bootstrap
samples.

METHOD n 1l—-a|LOW UP CP LGT BIAS

NORMAL 20 090 | 732 7.80 84.88 0.071 0.019
APPROX. 095 | 435 493 90.72 0.084 0.019
099 | 1.64 197 96.39 0.111 0.019

30 090 | 6.15 6.58 87.27 0.061 0.016

095 | 3.63 4.03 9234 0.073 0.016

099 | 1.40 1.36 97.24 0.095 0.016

LINDER 20 090 | 481 5.25 89.94 0.083 0.024
& BABU 095 | 232 269 9499 0.102 0.024
0.99 | 0.52 0.53 98.95 0.147 0.024

30 090 | 442 5.20 90.38 0.068 0.020

095 | 2.36 2.60 95.04 0.083 0.020

099 | 0.59 0.50 98.91 0.115 0.020

PROPOSED 20 0.90 | 3.61 4.61 91.78 0.088 0.093
METHOD 1 095 | 1.83 2.17 96.00 0.110 0.093
099 | 0.31 042 99.27 0.159 0.093

30 090 | 3.83 4.88 91.29 0.070 0.066

095 | 1.95 237 95.68 0.086 0.066

099 | 0.44 043 99.13 0.121 0.066

PROPOSED 20 0.90 | 4.66 5.26 90.08 0.085 0.017
METHOD 2 0.95 | 2.68 3.06 94.27 0.101 0.017
099 | 0.85 0.99 98.16 0.139 0.017

30 0.90 | 466 4.96 90.38 0.069 0.015

095 | 2.60 2.82 94.58 0.081 0.015

099 | 0.83 0.87 98.30 0.109 0.015
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Table 13: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of B. The design is uniform with “moder-
ate” heteroscedastic normal error distribution for N=10,000 simulations and
B=1,000 bootstrap samples.

METHOD n l1l—a|LOW UP CP MED-LGT BIAS

NORMAL 20 0.90 | 472 7.73 87.55 0.395 0.102
APPROX. 095 | 245 491 92.64 0.471 0.102
099 | 1.01 2.40 97.66 0.619 0.102

30 090 | 5.59 7.72 86.69 0.343 0.090

095 | 291 480 92.29 0.408 0.090

099 | 0.68 1.78 97.54 0.537 0.090

LINDER 20 0.90 | 420 7.35 88.45 0.418 0.131
& BABU 095 | 224 3.81 93.85 0.511 0.131
0.99 | 0.66 0.88 98.46 0.715 0.131

30 090 | 3.67 7.71 88.62 0.362 0.100

095 | 1.99 3.98 94.03 0.439 0.100

099 | 0.56 1.05 98.39 0.601 0.100

PROPOSED 20 0.90 | 2.45 7.07 90.48 0.452 0.131
METHOD 1 095 | 1.05 3.70 95.25 0.554 0.131
0.99 | 0.28 0.84 98.88 0.776 0.131

30 090 | 229 7.77 89.94 0.382 0.100

095 | 1.05 4.14 94.81 0.463 0.100

099 | 0.15 1.13 98.72 0.636 0.100

PROPOSED 20 0.90 | 4.39 2.05 93.56 0.422 0.093
METHOD 2 095 | 212 0.85 97.03 0.494 0.093
099 | 0.49 0.23 99.28 0.648 0.093

30 0.90 | 3.82 6.82 89.36 0.367 0.084

0.95 | 212 422 93.66 0.431 0.084

0.99 | 0.42 1.55 98.03 0.559 0.084
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Table 14: Comparison of tail coverage, coverage (%), length of confidence
intervals and absolute bias of 3. The design is uniform with “heavy”
heteroscedastic normal error distribution for N=10,000 simulations and
B=1,000 bootstrap samples.

METHOD n 1—a|LOW UP CP MED-LGT BIAS

NORMAL 20 090 | 419 9.94 85.87 0.847 0.234
APPROX. 095 | 2.23 6.82 90.95 1.009 0.234
0.99 | 0.38 3.03 96.59 1.326 0.234

30 090 | 3.80 9.00 87.20 0.685 0.180

0.95 | 1.58 6.08 92.34 0.817 0.180

099 | 0.21 251 97.28 1.073 0.180

LINDER 20 090 | 435 879 86.86 0.862 0.402
& BABU 095 | 2.60 4.54 92.86 1.060 0.402
099 | 0.85 0.93 98.22 1.520 0.402

30 090 | 2.63 10.23 87.14 0.680 0.236

095 | 1.49 5.65 92.86 0.827 0.236

099 | 039 1.37 98.24 1.140 0.236

PROPOSED 20 090 | 1.08 899 89.93 0.984 0.397
METHOD 1 095 | 0.45 457 94.98 1.199 0.397
0.99 | 0.07 0.77 99.16 1.669 0.397

30 090 | 0.50 10.69 88.81 0.761 0.236

095 | 0.17 597 93.86 0.924 0.236

0.99 | 0.01 147 98.52 1.264 0.236

PROPOSED 20 090 | 1.08 899 89.93 0.975 0.227
METHOD 2 095 | 045 457 94.98 1.159 0.227
0.99 | 0.07 0.77 99.16 1.571 0.227

30 090 | 1.90 821 &9.89 0.743 0.173

095 | 0.66 546 93.88 0.876 0.173

099 | 0.06 223 97.71 1.149 0.173
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Table 15: Summary of coverage (%), length of confidence intervals and ab-
solute bias of 3 for Tables 4.1-4.14.

CP LGT BIAS
METHOD n 1—a«

MIN MAX MIN MAX MIN MAX

NORMAL 20 0.90 | 81.23 87.55 0.048 0.847 0.014 0.234
APPROX. 0.95 | 87.33 92.64 0.057 1.009 0.014 0.234
0.99 | 94.65 97.66 0.075 1.326 0.014 0.234

30 0.90 |83.28 87.90 0.040 0.685 0.010 0.180

0.95 | 89.49 93.21 0.047 0.817 0.010 0.180

0.99 | 95.69 98.01 0.062 1.073 0.010 0.180

LINDER 20 0.90 | 86.86 89.94 0.063 0.862 0.180 0.402
& BABU 0.95 | 92.86 95.16 0.078 1.060 0.180 0.402
0.99 |98.22 99.07 0.111 1.520 0.180 0.402

30 090 |87.14 90.45 0.480 0.680 0.140 0.236

0.95 | 92.86 95.44 0.059 0.827 0.140 0.236

0.99 |98.24 99.07 0.082 1.140 0.140 0.236

PROPOSED 20 0.90 |89.93 91.78 0.069 0.984 0.490 0.397
METHOD 1 0.95 | 9498 97.32 0.088 1.199 0.490 0.397
0.99 | 98.88 99.33 0.128 1.669 0.490 0.397

30 090 |88.81 91.33 0.051 0.761 0.037 0.236

0.95 | 93.86 96.01 0.036 0.924 0.037 0.236

0.99 | 98.52 99.19 0.090 1.264 0.037 0.236

PROPOSED 20 0.90 |89.65 93.56 0.076 0.975 0.016 0.227
METHOD 2 0.95 | 93.60 97.03 0.089 1.159 0.016 0.227
0.99 | 97.72 99.54 0.117 1.571 0.016 0.227

30 090 |89.15 93.37 0.054 0.743 0.011 0.173

0.95 | 93.66 97.08 0.067 0.876 0.011 0.173

0.99 | 97.71 99.59 0.095 1.149 0.011 0.173
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