Logistic Regression Model with Surrogate

Covariate
by Q. T. Thach and N. G. N. Prasad

Q. T. Thach

Department of Community Medicine
The University of Hong Kong

Patrick Manson Building South Wing
7 Sassoon Road

Hong Kong

N. G. N. Prasad

Department of Mathematical Sciences
University of Alberta

Edmonton, Alberta, T6G-2G1
Canada

In the present paper, we propose an alternative estimator under a logistic
regression model with a surrogate variable using the empirical likelihood
technique. This estimator is shown to be asymptotically normal and more
efficient relative to the partial, imputation and bootstrap estimators.




1 Introduction

Logistic models are often used to model the conditional mean of a binary
response Y with a covariate of interest X. That is, the conditional mean of
Y|X is modeled as F(f5y + 1 X) where 5y and (; are unknown parameters
and F(z) = (1+e *) ! In such applications, values of the covariate X for a
subset study subjects may be missing; either the measurement is difficult or
expensive to obtain. A closely related variable Z may be used as a surrogate
for the covariate X. For example, consider the study done by Gladen and
Rogan (1979). They examine the disease risk due to body burden of accu-
mulated chemical pollutants in body tissues. Two classes of environmental
pollutants which exhibit this “accumulation” phenomenon are the metals,
such as DDT’s, PCB’s and PBB’s. Body burden is measured by the levels
of the chemicals. For the metals, depot tissues are teeth and bones. For the
halogenated hydrocarbon, fat is the depot tissue. The depot tissue is usually
impossible or difficult to obtain from living subjects. As a result, a surrogate
measurement is necessary, such as blood levels. However, blood levels are
usually lower than depot tissue and are affected by nutritional or metabolic
state of the individual. Use of such measurements is, therefore, subject to
criticism. One approach to this situation is to obtain the data in the form
of two independent samples. In the first sample (validation data set) only
the information on the response variable Y and the surrogate variable Z are
measured. While in the second one (primary data set) information on the
covariate X is measured in addition to the information on the response Y and
surrogate variable Z. The use of surrogate variables is common, particularly
in medical research, and there has been considerable discussion to identify
“valid” surrogates. For a review of the use of surrogate variables in clinical
trials, see Prentice (1989) and Wittes, Lakatos, and Probstfield (1989).
Although relatively few papers have addressed the missing value prob-
lem specifically in the context of logistic regression, there are four general
methods for the analysis of incomplete data with surrogate variable that can
be widely used, namely, partial case, imputation, maximum likelihood and
semi-parametric methods. Perhaps the simplest approach to this problem is
the partial case method, which discards cases with missing values. This is
the default method used by most statistical software packages such as SAS
and SPSS. Since we can measure the outcome and surrogate variables for
the discarded units, these units still carry some information on the effect
of the covariate. Hence, partial case analysis is not efficient for not using



all the available information. Especially, large missing rate in the covariate
can add up to a substantial loss of data. A second general approach is to
replace the missing values with reasonable estimates (imputed values) and
then analyze the data. Several strategies to construct such estimates have
been suggested. However, estimates of the variance of the estimated regres-
sion parameters from the artificially completed data set are invalid in general.
This is because variance estimates have to be corrected for variations due to
imputation. One solution to this problem is to assess this variance by com-
puting repeated estimates; following multiple imputation method, see Rubin
(1987) and Kalton and Kasprzyk (1986).

A third general approach is to parameterize the conditional probability
relationship between X and Z through model P,(X|Z) and to maximize the
likelihood

LBm) = [[ Ps(YVilXo)Py(XilZ) ] Poa(YilZs),

i€Sm $€Sn—m

where Pg,(Yi|Z;) = [ Pg(Yi|Xi)Py(Xi|Zi)dX, B = (Bo,b1), Sm and Sp_m,
denote the primary and the validation sets, respectively. However, this para-
metric method is not generally used in applied work, in part, because mis-
specification of the nuisance function P,(X|Z) can lead to an inconsistent
estimator of 3. Moreover, except for some special cases, implementation
of the likelihood based approach is cumbersome; requiring either numerical
integration to calculate Pg,(Y|Z) and its derivative, or other complicated
algorithms such as expectation maximization (EM) and data augmentation
algorithm. For more details, see Schafer (1987) and Tanner and Wong (1987).

The fourth general method for analyzing incomplete data with surrogate
variable is to use a non-parametric kernel regression method on the validation
data set S,_n, to estimate the probability Pg(Y|Z) (see Carroll and Wand,
1991). They proposed an estimate of 3 as a solution to

Y Ss(YiX)+ Y Ha(YilZi) =0,

1E€ESm 1€ESn—m

where S3(Y|X) was the score function of (Y|X) and Hg(Y|Z) was a kernel
regression estimate of (Y|Z). A semi-parametric estimate of 3 based on this
method was asymptotically normally distributed. Although this method is
generally more robust than the others, it has the disadvantage of requiring a
bandwidth selection. Pepe and Fleming (1991) considered a similar problem
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with discrete covariate Z. Stefanski and Carroll (1985) discussed the case in
which all the X;’s were unobserved while {Z;,i € S,,} were available.

Mak, Li, and Kuk (1986) assumed a model for P,(X|Z) and then pro-
posed a bias-corrected estimator of the form ,[;' 7 — €, where ,é ;7 Was an es-
timator based on the imputation method and ¢, was an estimate of bias
obtained from a bootstrap method. However, in their bootstrap procedure,
the information on Y and Z in the validation data set is not being used
in the resampling process. Furthermore, it is non-robust with respect to
a misspecification of the conditional density P,(X|Z). For these reasons,
the resulting bootstrap procedure is questionable and hence, can lead to an
inefficient estimator.

In the present paper, we propose an alternative estimator under a logistic
regression model with a surrogate variable using the empirical likelihood
technique. This estimator is shown to be asymptotically normal and more
efficient relative to the partial, imputation and bootstrap estimators.

Section 2 of this paper presents the logistic regression model with sur-
rogate covariate and the three methods of estimation. In Section 3, a brief
introduction is given to the empirical likelihood and it is shown, explicitly,
how empirical likelihood can be applied to the present problem. Section 4
derives the asymptotic variance of partial, imputation and empirical likeli-
hood estimators. Some simulation results that compare these methods are
given in Section 5.

2 The model

Let Y denote a binary outcome variable, X be a covariate of interest and
P3(Y|X) = F(By + £1X) be the logistic regression model for the conditional
distribution of Y given X. In the remainder of this paper, we consider the
case By = 0 and without lost of generality we let 3 = (3;. The objective is
to estimate the parameter  when some units of X are missing. The data
sets available for analysis consist of m observations {(Y;, X;, Z;),7 € Sp,} and
n —m observations {(Y;, Z;), ¢ € Sp—m}, where Z; is the measurement on the
surrogate variable Z for the ¢-th unit, ¢ € S, with S, = S, U Sp—r,. We
assume that the validation set, S,,_,,, is a simple random sample from S,,.



2.1 Partial case method

The partial case method estimates the logistic parameter 8 by maximizing
the likelihood function of m complete cases of X, ignoring Z. This likelihood
function is written as

Ln(B|X1,..., Xm) = [ [ F(Bz:)¥[1L - F(Bz,)]" . (2.1)

1€ESm

In practice, the partial case estimate of 3, denoted by Bm, and its estimated
standard error can be computed by using some standard statistical packages.

2.2 Imputation method

This method involves imputing missing values of X for units in S,,_,, with
predicted values obtained from a simple regression model X = a + bZ + ¢,
where ¢ denotes a random vector with mean 0 and variance o?. That is,
{X;,1 € Sy_m} are imputed by

X;=a+bZ, i=m—+1,m+2,...,n, (2.2)

where G and b are the least square estimators based on {X;, Z;;1 € Sp,}. It is
common practice to treat these imputed values as if they are true values and
then compute the variance estimate of ( using standard likelihood theory.
This procedure can lead to serious underestimation of the true variance of the
estimate when the proportion of missing values is appreciable. As a result,
the confidence interval based on the resulting estimate will have coverage
probability smaller than its corresponding nominal level since the method
ignores errors in the estimation of X from Z. To describe this method,
consider the likelihood function,

LI(B‘XI, e ,Xm, Xm—Ha oo ,Xn) = H F(,B(Z',)yl[l - F(,Bifi)]liyi, (23)

i€ESR
where
~ T; 1€ Sm
T; = ~ .
Ti 1€ Sp_m-

The estimate of 3, denoted by BI, is then obtained by maximizing the
likelihood equation (2.3). It can also be noted that the above estimator will
be biased due to imputation of X;’s.



2.3 Bootstrap method

Mak et al. (1986) proposed a bootstrap procedure to estimate the incurred
bias B; due to imputation. They suggested a bias-corrected estimator g =
BI — ¢o, where ¢y was a correction for the bias induced by the bootstrap
sampling. To describe their bootstrap sampling, let G and H be the empirical
probability distributions with mass m~! each at {X;,7 € S,,} and {&; =
X;—a— l;Z,-,i € Sn}, respectively, where d and b are the least square
estimators based on {X;, Z;;i € S}

1. Draw a sample {X},i € Sp,} from G and generate

Y=

1

0 with probabilty 1— F(BmXi*)
1 with probabilty F(6,X}),

where Bm is the partial case estimator obtained from the logistic re-
gression analysis based on {Y;, X;;i € S, }.

2. Draw a sample {¢*,i € S,,} from H and let {X} = a4—bZ*+&*,i € Sp}.

3. Then the “bootstrap sample ” will consist of {Y;*, X, Z};i € S,,} and
{Y*, Z i€ Spm}-

4. Compute BI using the imputation method outlined in Section 2.2.

5. Repeat steps (1)-(4) above k times to obtain ¢o = k'S _, G —

Bm, Where A}‘h is the value of the estimator 3; computed on the hA-th
bootstrap sample, h =1,... k.

Note that in their bootstrap algorithm described above, {Y;, Xi;7 € Sp_m}
are not being used in the resampling procedure. It is often the case that
the number of units in S,,_,, is much larger than the number of units in S,,;
therefore, the procedure can lead to an unstable variance estimator.

3 The empirical likelihood method

For the present problem, we employ the empirical likelihood method to use
all the information from both S, and S,,_,, through the following constraint

> Se(YilZi) =0, (3.1)

1ESH



where Sp(Y|Z) = Z[Y — F(6Z)] is the score function obtained from the
likelihood function

L(0|}/1a s 7Yna Z17 s aZn) = H F(ezZ)yl[l - F(ezi)]l_yi' (32)
1€ESy

Here, the goodness-of-fit of the logistic regression model of ¥ on Z is not
relevant. The idea of fitting the above model is only to extract association
between X and Y through the associated information between Z and Y when
X and Z are correlated.

3.1 The proposed method

We apply empirical likelihood method for the model P3(Y|X) = F(8X) b
maximizing the conditional likelihood

i€Sm
with respect to p;, ¢ = 1,... ,m subject to restrictions
Z pi=1, p;>0, €S, and Z Se(Yi| Zi)p: = 0. (3.4)
i€Sm i€Sm

where Sg(Y|Z) = Z|Y — F(0Z)]. The last restriction follows from the fact
that

Z Se(Yi|Z:;) = 0. (3.5)

Then the maximum of log L(p1, ps, - - - , Pm|Sn) may be found via Lagrange
multipliers by letting

H= Z logpi + A1 (1 - Z pz’) mAy Z piS(Yi| Zy), (3.6)

1€ESm 1€Sm 1€Sm

where the \’s are Lagrange multipliers and 6 is the maximum likelihood
estimator of @ obtained as the solution to the equation (3.5). Taking the
derivatives with respect to p;, we have

0H 1

=— — X —mAS;(Y:|Z;) = 0. 3.7
Op; Di 1m20(\) ()




Hence,

H
Zpia =m-M=0= X\ =m. (3.8)

Replacing Ay = m in (3.7), we have

1 1

= — , 1€ Sn,. 3.9
n= () sz (39

Now, the restriction from the third part of (3.4) is

1 S5(Yi|Zy)
0=Y pS;(YilZ)) = (—) o : (3.10)
from which s and hence the p;’s can be obtained . After obtaining the
optimal p;’s, 2 = 1..., m we obtain the empirical likelihood estimator of 3
from the estimating equation
Sm(B) =m > Sa(Yi| Xi)pi = 0, (3.11)
i€ESm

where S3(Y|X) = X[Y — F(8X)].

The solution Bz to equation (3.11) can be evaluated by implementing a
root finding algorithm such as Brent’s method (see Press, Flannery, Teukol-
sky, and Vetterling, 1993). In the next section, we consider the asymptotic
variance of GE along with the other estimators.

4 Asymptotic variances

This section is devoted to the derivation of the asymptotic variance of Bm,
BI and BE In addition, the asymptotic variance of the maximum likelihood
estimator will also be given for the case when all the X;’s, ¢ € S,, are observed.
In the rest of this paper, the asymptotic results are obtained by letting m —
oo and n — oo such that m/n — k' where k' € (0,1). Further, we assume
that there exists a positive constant C' such that |X;| < C and |Z;| < C
for all 7. The asymptotic distribution theory in a general case with density
fr(y; B) relies upon the following assumptions (see Cox and Hinkley, 1974
and Pepe, Reilly, and Fleming, 1994).
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(a) The parameter space (2 has finite dimension, is closed and compact,
and the true parameter value 3 is interior to 2.

(b) The first three derivatives of the log likelihood {(Y; 3) with respect to
0 exist in the neighborhood, Ny, of the true parameter value almost
surely. Further, in such a neighborhood, n~! times the absolute value
of the third derivative is bounded above by a function of ¥ whose
expectation exists. The absolute value of the third derivative of the
log likelihood I(Y'; 8) with respect to [ is bounded away from 0 in a
neighborhood, Ny, almost surely.

(c) —E{(d%1(Y;3)/9%B)} is finite and positive in the neighborhood, Ny, of
the true parameter (.

It can be noted that for the model considered in this paper, the above con-
ditions hold. The first and second derivatives with respect to 3 of the log-
likelihood [,,(8) =log L, (5| X1, - - . , Xin) defined in (2.1) are given by

oln(B) o v Pla(8)
a8 —iezsmxz{yz F(Bz;)], ERE

From standard likelihood theory, the asymptotic (unconditional) variance of
Bm, Var(Bm), is then given by

= Z z; F(Bz;)[1 — F(Bz;)).

1ESm

var(n) = {5 O]}

-1

11 \

- {; > a2F(Be)l1 - F(ﬁxn]} SN CRY
i€ESn

If all the X;’s, i € S,, were observed, the maximum likelihood estimator of 3

could be obtained by maximizing the function L(ﬂLXl, ..., Xp) with respect

to 3. We denote the resulting estimator of 8 by Gc. Then the asymptotic
variance of (¢ is given by

Var(Bo) = - {% 3 4P (Bt - F(ﬂx»]} . (4.2)

Turning to the asymptotic variance of BI, consider

VCLT'(BI) = E{VCW(Z;HS”)} + Var{E(ﬁﬂSn)} (43)

9



Since for large m, E(B;|S,) = 3 implies that Var{E(8;|S,)} = 0. Hence,

-1

Var(B) = 3 2| S aF (8L - F(5e)] +3 B {#F (821 — F(8)]

i€Sm i€Sn—m

(4.4)

To establish the consistency of Bg, we first obtain the consistency of 8z,
which is the same as fg with the condition that the p;’s are fixed known
constants. We use the following result on estimating functions due to Foutz

(1977).

Theorem 4.1. There exists a unique consistent solution to an estimating
equation Spn(B) given in (8.11) in a neighborhood Ny if

(i) |05, (B)/08| exists and is continuous in a neighborhood Ny;

(11) m=10S,,(8)/08 converges uniformly in probability to
E{m~105,(8)/98} in No;

(13) with probability converging to 1, the quantity 0S5, (8)/08 evaluated
at the true parameter is negative as m — oo,

(iv) E{Sm(8)}=0.

The next two theorems are along the lines of Theorems 3.1 and 3.2 in
Pepe, Reilly, and Fleming (1994).

Theorem 4.2. An estimator By that satisfies equation (3.11) exists and is
unique in a neighborhood Ny, with probability converging to 1 as m — oo and
n — oo such that m/n — k' where k' € (0,1). Furthermore, Bg is consistent
for the true parameter 3.

Proof. First, we assume that the p;’s are fixed and let I3(Y|X) =

-0 log L(B|X1, ... ,Xm)/0B% In this case, the score function is S,,(8) =
m Y Sp(Y;i| X;)pi, where Sp(Y;| X;) = X;[Y; — F(8X;)]. Condition (i) of Foutz
above follows from assumption (b).

Consider m~'0S5,(8)/08) = —m™" Y s i F(Bz:)[1 — F(Bz;)] which
is the average of independent and non-identically distributed random vari-
ables. Then, the Kolmogorov strong law of large numbers for inde-
pendent non-identically distributed random variables applies and yields

10



m1(08,,(8)/08) — {—n"' Y, 2F (B[l — F(Bai)]} % 0 as m — oo
(see Serfling, 1980, p.27). The pointwise convergence of 85,,(3)/03 can be
extended to uniform convergence on a neighborhood, Ny. This follows by not-
ing that the assumption (b) is satisfied for our model, i.e., 35,,(3)/06 has
bounded derivative in a neighborhood, Ny, almost surely and by the appli-
cation of the dominated convergence theorem to establish that E{I3(Y;|X;)}
also has bounded derivatives. The pointwise convergence of m~95,,(3)/03
at the true parameter value together with assumption (c) implies condition
(iii) of Foutz.
Finally, turning to condition (iv) we note that

E{Sn(B)} = E{m ) _ Ss(YilX:)pi}

1€Sm
= Y E{Ss(YiX:)}
1€Sm

~0. (4.5)

Hence the result of Theorem 4.2 follows for p;’s fixed.
We now give the asymptotic variance of Bg in the following theorem.

Theorem 4.3. As m — oo and n — oo such that m/n — k' where
k' € (0,1), m/?(Bg — B) converges in distribution to a normally distributed
random variable such that for large m and n, E(Bg) = 0 and variance given
by

Var(Bg) ( Z$2F Bz;)[1 — (ﬁ%)])

X (% > ZF(0z)1 - F(ez,-)]> : (4.6)

i€ESn
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Proof. Consider a second order Taylor series expansion of Sy, (BE) around (3.
Then we have

= Sull) = Sn() + 257 e = ) + 0 ™),
so that
(B — 8) = (o 2 A 125, ()} + 0,(0)

Observe that m 95, (8)/08 =m ">, s —Is(Yi|X;) which is the mean of
independent and non-identically distributed random variables. It was previ-
ously proven that m='95,,(8)/08—{—n"' Y27 F(Bx:)[1—F(Bz;)]} 2 0,
which is negative. Therefore, we look at the asymptotic distribution of Sy, (83).
Consider

Sm(B) =m Z Sp(Y:| Xi)pi, (4.7)
i€Sm

which is the sum of independent and non-identically distributed random
variables with mean 0. Asymptotic normality of S,,(3) follows then from
the Lindeberg-Feller central limit theorem by noting that X} = mX,[Y; —
F(BX;)]p; with EX} = 0 and for some v > 2, B;.* Y| E|X*|¥ = o(1) where
BZ =" E(X})?. Upon simplification, it is shown in the Lemma below
that the variance of S, (8) is given by expression (4.9). It follows that the
asymptotic distribution of m!/2 (ﬂE B) is normal with mean 0 and variance
given by

Var(yimis) = [—m-lasggﬂ)]_ mWar(S,(8), (4.8)

which is the desired result. O

Lemma 4.1. For large m and n, we have

Var{Sm(B) ( ) Zw2F Bz;)[1 — F(Bx;)] + { Za:zF Bzx;)

1€Sn 1€Sn

x[1 — F(Bz;)] — ( > mnF (B[l - (ﬁffz‘)]>

1€ESh

X (% Y HF(0z)[1 - F(Gzi)]> : (4.9)

€S
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Proof. To prove the lemma, we use the standard formula,
Var{Sn(8)} = E[Var{Sm(8)}Sn] + Var[E{Sn(5)}Sxl- (4.10)

First, consider
Sm(B) =m Y zily; — F(Bzs)]p;

= — 331[ (ﬁl’,)][l é(YHZz)]a (4'11)

and observe that by the strong law of large numbers n™* >, o Sp(Y3|Z;) 0,
since E[Sy(Y;|Zi)] = 0 and then by noting that S(Y'|Z) = Sp(Y|Z), we have

E{Sn(B)]Sa} = 7 3 ailus — F(6i)]. (4.12)
It follows that
VarlB{Sn(@) s = (T) S a2F(sa)1 - Fgz).  (413)

1ESh

Turning to E[Var{S,(8)}|S.], consider

=m Z xz[yz ﬁx ]pz

1€ESm
S (2 -3 Y S0
- m yz m ] (3 1 yz
1€ESm 1€ESm
—% "B* * %
:m(ym_ 59 szyz)
z* i€Sm
— (g, — B'75), (4.14)
where
yr =ailyi — F(Bx))l, Gp=m"") o, (4.15)
rr = zi(yi— F(0z)], z¢5 =m Z x}, (4.16)

=(mSL) Y aty, Sh=m) ap (4.17)



l.e. the empirical likelihood estimator is asymptotically equivalent to the
regression estimator ﬁzr, in the sense that m'/?(3g — Bi,) = 0,(1) (see Hartley
and Rao, 1967), and ), satisfy (3.10). Along the lines of argument given in
Chen and Qin (1993), it can be shown that

-1
1 1 B
— PEHANA) l% Y S3(Vi|Zi) | + op(m?)
1ESm i€ESm
= 0,(m™/?). (4.18)

Hence, the conditional variance of S,,(3)|S, is given by

Var{sn()5,} = m? (1) (1 )52

1 A S2, .
=m? (E) (sj* ;2 ) : (4.19)

where Py« and Sy«,+ are the correlation coefficient and covariance between

y* and x*, respectively and 5”; is the variance of y*. Taking expectation of
(4.19), we have

B[Var{Sn(8)|S,}] = m {% S a2F(Be)[1 - F(6z,)

1ESn

_ (% Z z;2; F(Bx)[1 — F(ﬁ%‘)])

1€ESh

—1
1
X (— Y P (6z)[1 - F(ez,-)]> :
" icsn (4.20)
Combining (4.13) and (4.20), we get

Var{Sm(B) ( ) Zw2F Bz;)[1 — F(Bx;)] + { Za:zF Bzx;)

1€Sn 1€Sn

x[1— ﬂxz]_< Zmzz (Bzi)[1 — F(Bz )])

1ESH

X (% PR AT F(ez,.)]> : (4.21)

i€ESn
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We note that the first component of the variance Var(BE) is the expected
information based on L(3|X1,...,X,), the likelihood for observed data if
{Xi,i € S,} were known. The second term is, therefore, the penalty induced
for not knowing {X;,7 € Sp_m}-

All of the above results regarding Bg assume that p;’s are fixed. Define
BE the same as g except the p;’s are replaced by their respective estimates

ﬁ,:(i) ! , 1€ Sp. (4.22)
m ) 14 \,8,(Yi| Z:)

Now, consider
m'?(Bg — B) = m'*(Bz — B) + m"*(Bz — Bg). (4.23)

By noting that the second term of the right hand side of (4.22) converges
to 0 in probability, we conclude that mY/ 2(Bg — ) has the same asymptotic
distribution as m'/2(3g — 3).

5 A simulation study

We conduct a simulation study to investigate the properties of the estimators
studied in this paper. In particular, the absolute bias and relative efficiencies
are considered for (a) the partial case estimator (G,), (b) the imputed es-
timator (BAI), (c) bootstrap estimator (fg), and (d) the empirical likelihood

estimator (8g). The values of (X, Z) are generated according to the following
three different models:

(I) Linear: X; = 142Z;+¢; with Z; %' Unif(0, 2) and &; ~ v/Z;N(0, 0.25)
for i € S,.

(I1) Quadratic: X; = 2.0 —2.0Z; +2.0Z2 + ¢; with Z; and ¢; are defined as
in Model I for 7z € S,,.

(IIT) Linear-Quadratic: X; =1+ 27Z; +¢; for i € S, and X; =1+ 222 + ¢;
for 7 € S,,_,, with Z, and ¢; are defined as in Model I.

15



Other parameters covered in this study are 8 = 1 and n = 5,000. The
outcome Y is generated from a Bernoulli random variable conditional on X,
whereby Y = 1 with probability (1 + exp{—0z)}) ! and Y = 0 otherwise.
Furthermore, for each combination of the above parameter values, N = 200
independent samples are generated for n = 5,000 according to the above
three models. A simple random sampling of size m = 100,200 and 500 are
then taken without replacement from these populations of n elements. This
sampling is repeated for S = 50 times. To run the bootstrap procedure with
200 simulations and 100 bootstrap samples with S = 50 on a Sun SPARC
station 20 model 712, with dual 75 MHZ super SPARC CPU’s and 192 MB of
RAM, 600 hours of CPU time are required. Hence, to minimize the computer
time, the bootstrap method is implemented only for the Model II1. The Mak’s
bootstrap estimator is computed based on B = 100 bootstrap samples. The
absolute bias for each estimator is computed using the following formula:

Absolute bias(8; ) = NS Z Z Bem (5.1)

n=1 s=1

(5.2)

where 37" is the estimator based on the method ¢ = m,I, B and E. The
relative efficiencies of 3,,, O and (g are defined as the ratios of the mean
square error of 3; to their respective mean square errors., i.e.,

Relative Efficiency (8, ,) = %, where (5.3)
¢

MSE(R™) = o SOS (G- B2, (54)

The results are reported in Tables 1-3. The simulation results show the
advantages of the empirical likelihood approach over its competitors on both
grounds: biasedness and efficiency. The absolute bias values under the Model
I are in the range of 0.068-0.167 for Bm, 0.348-0.381 for BI and 0.062-0.149
for BE While the efficiencies relative to BI are in the range of 3.003-17.720
for ﬁm and 3.973-21.857 for ﬂE Similarly, the absolute bias and efficiencies
values under Model II have the similar pattern as in Model I. The absolute
bias values under the Model III are in the range of 0.079-0.155 for Brm, 0.140-
0.160 for ﬁ;, 0.055-0.094 for ﬂB and 0.036—0.076 for ﬂE While the efficiencies
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relative to BI are in the range of 0.599-2.039 for Bm, 1.514-4.146 for BB and
2.753-10.250 for BE There is a negligible absolute bias in BE with greater
relative efficiency over all other estimators.

The empirical likelihood estimator performs well even when the relation-
ship between X and Z is not linear for ¢« € S,,_,,, whereas, the performance
of the bootstrap estimator in this case is rather poor. These results are
encouraging and imply that the proposed method is robust to misspecifica-
tion of the relationship between X and Z. It is interesting to note that the
bootstrap estimator still performs better than the imputed estimator.

In summary, the method we have proposed is a useful alternative to the
standard procedure and it is not as computationally intensive as the boot-
strap method. The computations can be carried out with an existing maxi-
mization subroutine such as Brent’s method.
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Table 1: Absolute bias and efficiencies of three estimators relative to ﬁ} for
n = 5,000, S = 50 and N = 200 under linear model X; = 1.0+ 2.0Z; + ¢; for

1€ 5,

Absolute bias

Rel. Efficiency

m Bm BI BE

100 0.167 0.381 0.149
200 0.118 0.348 0.102
200 0.068 0.355 0.062

Bm BE
3.003 3.973
4.838 6.586

17.720 21.857

Table 2: Absolute bias and efficiencies of three estimators relative to BI for
n = 5,000, S = 50 and N = 200 under quadratic model X; = 2.0 — 2.0Z; +
20Zz2 + & for 7 € Sn

Absolute bias

Rel. Efficiency

m Bm BI BE

100 0.195 0.357 0.171
200 0.112 0.371 0.095
500 0.074 0.317 0.063

Bm BE
1.521 1.915
6.745 9.351

11.121 15.143

Table 3: Absolute bias and efficiencies of three estimators relative to BI for
n = 5,000, S =50, B =100 and N = 200 under linear model X; = 14+27;+¢;
for i € S,, and quadratic model X; =1+ 2Z2 +¢; for i € S,,_p-

Absolute bias

Rel. Efficiency

b B B D

B’m BB BE

100
200
500

0.155 0.160 0.094 0.076
0.122 0.153 0.071 0.049
0.079 0.140 0.055 0.036

0.599 1.514 2.753
0.996 2.693 6.513
2.039 4.146 10.25
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