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This paper considers a new variance estimator for ratio estimation based on the em-
pirical likelihood approach under simple random sampling without replacement both
in single and two—phase sampling. We will use this approach to choose the probability
weights under constraints formulated from the information on the auxiliary variable.




1 Introduction

In survey sampling, we are often interested in estimating the mean value of a charac-
teristic Y of a particular population when the information on the auxiliary variable
X, correlated with Y is already available or can be easily observed. For such situa-
tions, the estimation for the mean value of Y through ratio and regression techniques
has been discussed in the literature for two different cases (see Cochran, 1977) (1)
Single—phase case: When the population mean of the characteristics X is already
known and the information on Y is observed for units in a sample of size n; (2)
Two—phase case: When the population mean of the characteristics X is not known
and it is estimated by taking a large random sample of size n’ and observing X, then
drawing a subsample of size n observing Y.

Two—phase sampling is generally employed when it is economically feasible to
take a large preliminary sample in which an auxiliary variable X, correlated with a
characteristic of interest Y, is measured alone. The initial sample gives an estimate Z,,
of the population mean X, while the subsample in which Y is measured is employed
to estimate the population mean Y through ratio or regression estimation using Z,.
For example, in a survey that estimates the total wheat yield in a given locality in
Canada, one might use a large sample of n’' farms to estimate the total area under
wheat cultivation and a subsample of n farms to determine the actual yield.

Chen and Qin (1993) employed the empirical likelihood method to use summary
information on the auxiliary variable at the estimation stage. Benhin and Prasad
(1997) extended the empirical likelihood to double sampling when two auxiliary vari-
ables were available.

Turning to variance estimation under the ratio method, Rao and Sitter (1995)
proposed a new linearization variance estimator for a ratio estimator that made bet-
ter use of the sample data than the standard textbook formula. They also obtained
a jackknife variance estimator and concluded through a simulation study that their
conditional and unconditional variances had better properties than the standard for-
mula (see Sukhatme and Sukhatme,1970). Subsequently, Sitter (1997) extended this
method to regression estimation along the same lines as ratio estimation. He showed
under a model proposed by Dorfman (1994) that the resulting variance estimators
were design—unbiased and approximately model-unbiased. For more information
on variance estimation under two—phase sampling under model-based approach, see
Dorfman (1994).

This paper considers a new variance estimator for ratio estimation based on the
empirical likelihood approach under simple random sampling without replacement
both in single and two—phase sampling. We will use this approach to choose the
probability weights under constraints formulated from the information on the auxil-



iary variable.

In Section 2 and Section 3, we review variance estimators available for ratio estima-
tion in single and double sampling. The proposed variance estimator is derived under
each case using empirical likelihood. We extend the empirical likelihood method to
regression estimation in Section 4. A simulation study to examine the unconditional
and conditional repeated sampling properties of the proposed variance estimator in
two phase sampling is presented in Section 5.

2 Variance estimator of the ratio estimator under
single—phase sampling

Suppose that a population consists of N distinct units with values (y;, z;), where

z; >0 (1=1,... ,N)._Denote the population means of Y and X, respectively, by Y

and X. To estimate Y under simple random sampling of size n, it is customary to

use the ratio estimator ,; = (§/Z)X, where 7 and 7 are the sample means of y and
z. The variance of ¥, is approximated by (Cochran, 1977, p. 155) and given by

V(Grs) = (% - %) 53, (2.1)

where 53 = (N —1)"'S2N. D2, D, = Y; — RX; with R = Y/X. Two commonly
used estimators of V (g,s) are

wiie) = (5 ) ad w@m)=(5-5) (f) (2.2

1
n—1

where

2=

de =50 — 2rsgy + 1752, (2.3)
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with 7 = /%, d; = y; — rz;. Although the original motivation for v;(r) = vy (7,s)/X>
as a variance estimator of the ratio R is the unavailability of X, it is not clear that
v1(rs) is indeed worse than vo(%rs) (see Cochran, 1977 and Rao and Rao, 1971).
Chen and Qin (1993) applied the empirical likelihood approach in conjunction with
summary information on the auxiliary variable in improving the customary estimator
under simple random sampling. They showed that the empirical likelihood estimator
was asymptotically equivalent to the linear regression estimator when the population
mean of the auxiliary variable was known (see Hartley and Rao, 1968). To use the



empirical likelihood method as described in the previous chapter, we maximize the
empirical likelihood

oF) =[] (2.4)

where p; = P(Y = y;). The p;’s are subject to 0 < p; <1 and >  p; = 1. With
these weights an empirical likelihood estimator for S is given by

salel) = pids. (2.5)
i=1

The resulting empirical likelihood variance estimator for g, is

(i) = (5 - 3 ) sl 26)

3 The two—phase sampling procedure

Assume that a simple random sample s’ of size n’ is selected without replacement from
a population of N units and z; is observed for 7 € s'. A simple random subsample
s of size n is then selected without replacement from s’ and y; is observed for i € s.
Several estimates of Y = Zfil Y;/N can be formed. The simplest is the usual biased
ratio estimate with the population mean X replaced by its estimates Z,, given by
Grt = (n/Zp)ZTpr = TZp, where g, and Z, are the means for s and Z, for s'.

3.1 The ratio estimator and some preliminary results

The estimator ,; is design-consistent for Y, i.e., plim,(g,; — Y) = 0, where 7 de-

n—oo
notes the probability space generated by the sampling scheme. The variance of §,; is
approximated by a standard formula and is given by

.. (1 1 1 1
where
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with D; = y; — Rr; and R = Y/X. Note that if n' = n, (§,/%,)Zn = ¥, and so (3.1)
reduces to (1/n—1/N)S?, which is the variance of 7, under simple random sampling
in single—phase sampling. It is observed that if n' = N, the estimator is the ratio
estimator under single—phase sampling, and the variance reduces to the approximate
formula for its variance. It follows that the estimate 7,; based on two—phase sampling
is more efficient than the estimate g, based on simple random sampling when no
auxiliary variable is used, if

R?S2 —2RS,, < 0,
ie., if
G 1
Pave, ~ 9

where p,, is the population correlation coefficient between x and y, and C, and C,
are population coefficients of variation of z and vy, respectively. A design-consistent
estimator of the variance estimator of 7, is given by

_ 1 1 1 1
vo(Fre) = (ﬁ - ;) sq+ (; - N) 332,, (32)

1 1 _
2 = — dod, s = — > (i — )% (3.3)
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where

with d; = y; — rz;. The second term in vy(g,¢) is obtained by using the sample
variance sz to estimate the population variance 5’5.

3.2 Linearization variance estimator

Rao and Sitter (1995) proposed a linearization variance estimator of §,.; that made
better use of the sample data than the standard one, vg. They first expressed Sg as

2 _ L _RX)2

= — (yz—Ra:1+Rx,—RX)2

i=1
1 N

= =7 21— Re:)’ + 2R(yi — Re)(w: — X) + R*S}}
i=1

= 5% +2RSp, + R2S?, (3.4)



where S% and S2 were the corresponding population variances of D; and z;, Sp, was
the population covariance between D; and z;. Then the sample variance of 55 can be
written as

2 = 83+ 2rsg + 1’52, (3.5)

where 52, s4, and s2 are the sample analogues of S3, Sp, and S2 based on subsample
s. It follows from (3.4) and (3.5) that an alternative estimator of S that makes more
use of the sample data is obtained by using

1

2 = 2

S, = E Ty — Ty
i€s’

in place of s2. The linearization variance estimator of g is

_ 1 1), 11 1 1\ 4o,
v1(Grt) = (E — N) sg+2 (ﬁ — N) TSdz + (E — N) res. (3.6)
This variance estimator is also design-consistent. We can rewrite (3.1) using (3.5) as
i 1 1)\, 11 1 1\ ,,
D=(--= 2= = Z ) rsge+ (= — — . .
vo(Trt) <n N) sg+ (n’ N) TSqzr + (n’ N) s, (3.7)

3.3 Jackknife variance estimator

Another approach to variance estimation is to use a jackknife technique. Rao and
Sitter (1995) proposed a jackknife method which entailed recalculating g,; with the
jth element removed for each j € s’ and then using the variance of these n’ jackknife
values, gr¢(7). Clearly, deleting unit j will affect Z, and g, only for j € s but not for
j € s’ — s, while it will affect Z,» for all j € s'. Thus, they defined

rt(7) = {0 (5)/Zn(3) } T (7)

for all j € ', where

L D2 i jes . Y if e
= n—1 — n—1
Zn(J) { Ty if jes —s, In(J) { Un if jes —s,

and Z,(j) = (W% —x;)/(n' — 1) for all j € s'. Now the usual jackknife method to
Frt(j) will yield the following variance estimator:

n -1 o 9
— > {7() — T} (38)

n ;
jes!

() (grt) =
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This jackknife estimator ignores the finite population corrections 1 — n/N and 1 —
n'/N.

For a nonlinear parameter 6 = g(Y), a jackknife variance estimator is obtained
by replacing grt(]) and grt in (38) by grt(]) = g(Y;t(J)) and grt = g(grt)' A linearized
version of vy, for large n, is obtained by noting that

. —r (5) - Z’Z(%) (25 if jes
?jrt(]) — Urt = B (39)
—r (222) if jes —s,

n'—1

and assuming Zp(j)/Zn(j) = T /Ty in (3.9). From (3.8) and (3.9), we get

C((E )\ S T\ TSae 7282
Vi(Gpt) = | = <2 4+2(= + . (3.10)

Ty, n T, n! n!

Ignoring the finite population corrections and comparing (3.9) and (3.10), it now
follows that vy is also design-consistent for V(7,;) since T, /T, = 1 for large n. It
also follows from (3.9) and (3.10) that another design-consistent linearization variance
estimator, when the finite population corrections are not ignorable, is given by

_ 2 _
=y [ I 1 1 2 1 1 Tt 1 1 2.2
i = (2) (G-5) vz (5-5) (3) et (5-5) e

(3.11)

Rao and Sitter (1995) noted that if the finite population corrections could be ignored,
vy should perform well conditionally given, Z, /Z,, since it was asymptotically equiv-
alent to vs.

In the next section, we propose two alternative variance estimators. One of them
is a modification of vy while the other one is suggested by the empirical likelihood
principle. Both utilize the information collected in the first phase as supplementary
information in order to improve the precision of variance estimator of population
characteristics.

3.4 The empirical likelihood for the double sampling

Since no auxiliary information is available beyond the initial sample s’, we maximize
the empirical conditional likelihood given by

L(s|s) =[] p (3.12)

1€S



subject to

pi>0, Y pi=1 and > puw;=0, (3.13)

i€s i€s

with w; = z; — Z». Then the empirical likelihood-based estimator for the sample
variance sz and sample covariance s, are obtained by replacing n~! with the p;’s in
the plug-in estimator, i.e.

s2(el) = Z pi(yi — 7)%, (3.14)
Sgy(el) = sz(a:, —Z)(y; — 7)- (3.15)

We use arguments of Rao and Sitter (1995) to obtain the variance estimator of ;.
First we observe that Efil D; = 0 and that S% is expressed as

1 N
2 _ - _ RX.)?
Sp=5_7 2 (Y; - RX;)
1 N
=1 2Yi~ - R(X; - X))
i=1
1 N
=N _1 Y {(¥i—Y) —2R(X; - X)(Y; - ¥) + R*(X; — X)*}
=1
= S2 —2RS,, + R*S, (3.16)

where Sy, is the population covariance between z; and y;. Thus vo(g,¢) in (3.2) can
be re-expressed as

) 11\, 11 ,(1 1\,
UO(yrt) = (ﬁ - ﬁ) Sy —2r (ﬁ — ;) Sy +r (ﬁ — E) Sy- (317)

The resulting variance estimator based on empirical likelihood is given as

va(Foe) = (% - %) $(el) — 2r (1 - ni> sayel) + 72 (1 - l) 2. (3.18)

n n n

Intuitively, one would expect the variance estimator based on the empirical like-
lihood to be more efficient than the Rao—Sitter estimator, since it makes use of extra
information, i.e., the knowledge of the mean of a subsample of z.



An alternative variance estimator of V() can also be obtained. We note that
when the y;’s are exactly proportional to z;’s for i = 1,..., N, i.e., y; = kx;, with
k as a constant, then the variance V(7,;) reduces to (1/n' — 1/N)k?S2, which could
be estimated by k?(1/n’ — 1/N)s?. Putting y; = kz; in (3.2), we get vo(Gr) =
k*(1/n' — 1/N)s2, which is less efficient than k%(1/n' — 1/N)s/2. In view of this, we
propose a modified estimator of vy given by

_ 11 1 1Y) 4,82
V3(rt) = (ﬁ - E) sy + (ﬁ — N) sjs—z. (3.19)

Z

Note that vs(7,) reduces to k*(1/n’ — 1/N)s’2 when y; = kz;.

4 The regression estimator

In this section, we will consider the extension of the ratio method of estimation in
two—phase sampling to the case of linear regression estimation under the empirical
likelihood framework. To this end, consider the two—phase sampling scheme described
in Section 2. The simple linear regression estimator for two—phase sampling defined
by

ylr = gn + b(i'n’ - jn); (41)

where b = s,,/s2 is the least square regression coefficient of y; on z; based on s.
This estimator is design consistent for Y. A design consistent linearization variance
estimator of 7, is given by the standard formula

i 1 1), 1 1\,
UO(ylr) = (E — E) Sdl, + (ﬁ — N) Sy (42)
where s3, = (n—1)"' Y, ., di? and s} are the sample variances of dj = y;—§—b(z; —Zn)
and y;. Alternatively, vo(%i-) can be expressed as

i} 1 1), 11 , (1 1Y),
UO(le) = <; - N) Sy - 2b (E - E) sagy + b (E - E) S.T' (4.3)

Sitter (1997) proposed three variance estimators for regression estimation along the
same lines as the ratio estimation. The linearization and jackknife variance estimators
in this case are given, respectively, by

@) = (- 5) s+ (5 -5 s (44



and

— . 53/ b25€v2 T, —Zn 2 d (17] wn
UJ(ylr) = + o + {(n—l)s%} ZjES k) + R (45)
where k; = 1/n+ (z; — Z,)?/{(n — 1)s2}, and
dl2a]

2 /1 ]aJxJ n’)
R:E{_Zu—- n—1Z (1—k; } (46)

i€s

with a; = {n(z; — Z,) (T — Tn)}/{(n — 1)s2}.

Also, noting that the first two terms on the right hand side of (4.5), and comparing
these to (4.4), a linearized version of v;(%;.) when the finite population corrections
are not ignorable is given by

(1 1\, (1 1) b2
el =\s-5)% s ")

I2

+{xn'—xn}zd($]—wn ‘R (47)

In a similar motivation as in Section 3.4, a variance estimator for 7;. based on the
empirical likelihood approach is

w(i) = (3= 5 )b -2 (1= 2 smle+¥ (1= 1)t (4

n

where s2(el) and s,y (el) are defined, respectively, by (3.14) and (3.15).

5 A simulation study

We study the finite sample properties of various variance estimators through a sim-
ulation study. We adopt the model and parameter settings used by Rao and Sitter
(1995). The model we consider is

= fBz; + xl/z

where &; %' N (0,0?), z; ESs gamma(a,b) and e; and z; are independent of each
other. Thus the mean, the variance and coefficient of variation of = are given by
Uy = ab, 0? = ab® and C, = 0,/p, = a~ /2, respectively. Furthermore, the mean
and variance of y are py, = By, and 02 = %02 + p,0°, and the correlation between
z and y is p = fo,/0y.
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We confine our simulation study for n = 20, n’ = 100, and n = 80, n’ = 400. We
generate R = 10, 000 independent two—phase random samples according to the above
model with 8 = 1.0 and p, = 100 and o and o, chosen to match specified values
of p and C,. Here, we ignore the finite population corrections since the two—phase
samples are generated from an infinite population. The Monte Carlo estimator of
true mean squared error of ¥, is computed using

R
1
MSE() = 3 > (00 = my)* (5.1)
t=1

where ,7],(,? denotes the value of 7,; for the ¢-th Monte Carlo run. The Monte Carlo
estimate of mean squared error of a specified estimator say v is computed using

MSE(v) = %Z(v(t) — MSE(%.))* (5.2)

t=1

Table 1 gives the values of MSE(v)/MSE(vy) for v = vy,...,vs and v; for
different values of p and C, where for convenience, vy = vy(gr), t = 0,...,4 and
vy = v7(Frt). It is clear from Table 1 that vy is substantially more efficient than other
variance estimators. On the other hand, v3 is more efficient than vy, v and v; only
for C, =1.4,1.0,0.5,0.33 and p = 0.8 and substantially more efficient than v, for all
values of p and C,. Note that v; is more efficient than vy only for large n = 80 as
the factor Z,//Z, = Zn(j)/Zn(j) = 1 becomes more stable.

We also investigate the conditional properties of each variance estimator along
the lines of Rao and Sitter (1995). The 10,000 simulated samples are first ordered
on the values of Z,s /%, and then grouped into 20 successive groups each containing
G = 1,000 samples. For each group, the simulated conditional mean squared error

of ¥+ and conditional mean of v;,t = 0,... ,4 and v; are calculated, respectively,
1< 1 &
MSE, = S -} and B = a2 9. (5.3)
g=1 g=1

For each of the 20 groups, the values of E.v; for t = 0,... ,4, Evy and MSE, are
plotted against the group averages of Z, /Z, for 12 selected values of p and C,.
Figures 1-12 with n’ = 100 and n = 20 show these results. The case n' = 400 and
n = 20 produce similar plots and therefore were omitted. It is clear from these plots
that vy, vs, v3,v4 and vy perform well in tracking the conditional MSE when Z,, /Z,, is
between 0.9 and 1.4 with v; and v, slightly better, i.e. they exhibit a similar pattern
to the conditional MSE. However, v is able to track the conditional MSE only when

11



T /Ty, is near 1. This means that with a balanced design, vy does not deviate much
from the conditional MSE.

It is noticed that vy, vs,vs3,v4 and vy perform poorly in tracking the conditional
MSE when Z, /Z, < 0.9 and also when Z,//Z, > 1.4. Whereas, vy leads to signifi-
cant overestimation of conditional M SE when Z,/ /Z, < 0.9 and lead to significant
underestimation when Z,/Z, > 1.2. Thus, all things considered, vy, vy, v3,v4 and vy
behave more closely to the conditional MSE than do v,.

The simulation study suggests that the proposed variance estimator v, provides
more stable standard errors for ratio estimation. It has a competitive conditional
performance, having smallest unconditional MSE. The commonly used estimator vy
fails on both grounds.

12



Table 1: Mean square error of vy, v, v3, v4 relative to vy.

n =20, n' =100

n =80, n' =400

C, Cy
p 14 10 05 033 14 10 05 0.33
MSE(v,)/MSE (vo)
09 051 054 063 067 052 055 0.63 0.66
0.8 073 077 084 088 072 0.76 0.84 0.88
0.7 082 086 093 094 085 086 092 0.94
MSE(vs)/MSE (v)
09 055 057 064 068 053 055 0.63 0.65
0.8 087 086 086 087 074 0.78 0.83 0.87
0.7 098 094 098 094 089 088 093 0.94
MSE(vy)/MSE(vo)
09 089 077 073 074 061 058 0.65 0.67
0.8 1.62 1.24 101 1.00 085 0.86 0.87 0.89
0.7 186 1.35 118 1.07 1.03 098 095 0.96
MSE(vs)/MSE(v)
09 052 063 079 090 057 063 081 0.88
08 065 071 082 085 066 0.71 084 0.93
0.7 067 078 088 092 073 0.75 090 0.95
MSE(vs)/MSE(vo)
0.9 042 048 059 0.64 046 049 0.60 0.63
0.8 060 066 075 078 0.61 0.66 0.78 0.85
0.7 064 074 085 088 0.71 0.74 087 091
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Figure 1: Conditional means E vy, E.vq, E.v2, Ecvs, Ecv4, E.v; and conditional mean
squared error (M SE.) of §,; versus group average Z,/Z, with n'=100 and n = 20.
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Figure 2: Conditional means E vy, E.vq, E.v2, Ecvs, Ecvs, E.v; and conditional mean
squared error (M SE.) of §.sversus group average T /Z, with n'=100 and n = 20.
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Figure 3: Conditional means E vy, E.vq, E.v2, Ecvs, Ecv4, E.v; and conditional mean
squared error (M SE,) of g, versus group average Z,/Z, with n'’=100 and n = 20.
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Figure 4: Conditional means E vy, E.vq, E.v2, Ecvs, Ecv4, E.v; and conditional mean
squared error (M SE.) of §.sversus group average T /Z, with n'=100 and n = 20.
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Figure 5: Conditional means E vy, E.vq, E.vs, Ecvs, Ecvs, E.v; and conditional mean
squared error (M SE.) of §,; versus group average Z,/Z, with n'=100 and n = 20.
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Figure 6: Conditional means E vy, E.v1, E.v2, Ecvs, Ecv4, E.v; and conditional mean
squared error (M SE.) of §,; versus group average Z,/Z, with n'=100 and n = 20.
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Figure 7: Conditional means E vy, E.vq, E.v2, Ecvs, Ecv4, E.v; and conditional mean
squared error (M SE,) of §,; versus group average Z,/Z, with n'=100 and n = 20.
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Figure 8: Conditional means E vy, E.vq, E.v2, Ecvs, Ecvs, E.v; and conditional mean
squared error (M SE.) of §,; versus group average Z,/Z, with n'=100 and n = 20.

21



1800

1500

Mean Squared Error

1200

900

] ] ] ] ] > ]

0.6 0.8 1 1.2 1.4 1.6 1.8 2
Group average Ty /Ty,

Figure 9: Conditional means E vy, E.v1, E.v2, Ecvs, Ecv4, E.v; and conditional mean
squared error (M SE,) of §,; versus group average Z,/Z, with n'=100 and n = 20.
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Figure 10: Conditional means E.vy, E.vq1, E.ve, Ecvs, E.v4, E.v; and conditional
mean squared error (M SE,) of §,; versus group average T, /Z, with n'=100 and n
= 20.
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Figure 11: Conditional means E.vy, E.vq1, E.ve, Ecvs, E.v4, E.v; and conditional
mean squared error (M SE,) of §,; versus group average T, /Z, with n'=100 and n
= 20.
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Figure 12: Conditional means E.vy, E.v1, E.ve, Ecvs, E.v4, E.v; and conditional
mean squared error (M SE,) of g, versus group average T, /Z, with n'=100 and n
= 20.
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