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Small Area Estimation with Auxiliary Survey Data

Abstract

Large governmental surveys typically provide accurate national statistics. To decrease the

mean squared error of estimates for small areas—domains in which the sample size is small—

often auxiliary variables from administrative records are used as covariates in a mixed linear

model, and it is generally assumed that the auxiliary information is available for every small

area in the population. In many cases, though, auxiliary information is available for only

some of the small areas, either from another survey or from a previous administration of

the same survey. We propose and develop properties of small area estimators that use mul-

tivariate models to combine information from several surveys. Computational algorithms

are discussed, and a simulation study indicates that if quantities in the different surveys are

sufficiently correlated, substantial gains in efficiency can be achieved.

Key Words and Phrases: best linear unbiased prediction; multiple surveys; multivariate

mixed effects model; sampling on two occasions; variance components
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1 Introduction

Most large sample surveys conducted by agencies such as the U.S. Bureau of the

Census or by Statistics Canada provide accurate statistics at the national level. Increasingly,

though, governments are interested in obtaining statistics for smaller domains such as states,

provinces, or different racial and ethnic subgroups. These domains are called small areas—

the term “small” refers to the fact that the sample size in the area or domain from the

survey is small. The goal is to estimate µiy, the mean value of a variable of interest y in

small area i.

National surveys such as the U.S. Current Population Survey (CPS) or the U.S. Na-

tional Crime Victimization Survey (NCVS) are used to provide national estimates of poverty

and criminal victimization. These surveys do not, however, contain sufficient sample sizes

to give reliable estimates by themselves of small areas such as counties or minority groups,

or to provide detailed information about events such as domestic violence that affect only

a small part of the population. Current methods for estimating poverty in small areas

incorporate auxiliary administrative information from sources such as tax records and food

stamp programs as explanatory variables in a regression equation; the predicted value of

the regression is combined with a direct estimate of poverty from the CPS to estimate the

county poverty rate. This approach assumes that the administrative data are without er-

rors; it also does not incorporate information from other surveys or make use of longitudinal

information.

Traditionally, small area estimation relies on a mixed model relating the responses of

interest in the small areas to each other and to covariates. The model allows the estimate

of µiy to “borrow strength” from other small areas through random effects terms. Fay

and Herriot (1979) first studied improved estimation in small areas using known vectors of

covariate means. Since then, other models have been used by Dempster et al. (1981), Fuller

and Harter (1987), and Battese et al. (1988), among others. Prasad and Rao (1990) put

many of these estimators in a unified framework and derived second-order approximations

to the mean squared errors of the estimators. Ghosh and Rao (1994), Marker (1999), and

Rao (1999) reviewed much of the subsequent work in small area estimation. More recently,

Datta et al. (1999) derived theory for multivariate small area estimation and Prasad and
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Rao (1999) robustified estimation by incorporating the design weights.

In many situations, though, related information may be available for some units in a

small area but not fit into one of the above frameworks. Another survey, with a possibly

different sample design, may provide information related to the response of interest in the

small areas. The new American Community Survey (ACS) is scheduled for full implementa-

tion in 2003; the National Research Council (1999) suggests using several years of ACS data

to provide direct estimates of poverty, or using ACS data in a Fay-Herriot (1979) model.

Since the CPS also provides information on poverty every year, however, greater precision

in poverty estimates can be obtained by combining information from variables x measured

from the ACS with variables y measured from the CPS.

For estimating criminal victimizations in small areas, the Uniform Crime Reporting

System (UCR) provides data about crimes reported to the police in each state. The UCR

data, however, are missing for many jurisdictions; some data points are likely misreported,

and the types of crimes and definitions of crimes reported differ from those in the NCVS.

Even though the UCR deals only with crimes reported to the police, measures of crimes

from the UCR and NCVS are positively correlated for different metropolitan statistical areas

(Wiersema et al., 2000). The UCR data can be used to improve the small-area estimates of

victimization rates from the NCVS, even though the UCR has much missing and erroneous

data; variables from the UCR can be thought of as values x from a second, independent

survey much as the CPS and ACS would be considered separate surveys.

In another setting, many surveys have a panel design in which the same units may

be sampled repeatedly. Households selected to participate in the Canadian Labour Force

Survey remain in the sample for six consecutive months; each month, one-sixth of the

sample is replaced with new households. As in Cochran’s (1977, Section 12.11) description

of sampling on two occasions, y is the value of a characteristic on the second occasion and

the auxiliary variable x is the same variable for the first occasion.

In all of these settings, a primary response of interest, y, is measured in one survey;

auxiliary responses x are measured in other surveys or in previous administration times of

the same survey. We expect that y will be positively correlated with the auxiliary responses

x. Thus, we can expect an improvement in efficiency of small area estimates of µiy if
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the information from x is incorporated. However, since the information from x may have

measurement error or sampling variability, using it as covariates in a regression model (as

is done with administrative records) does not properly account for the uncertaintly in x.

In this paper, we provide a general method for small area estimation when informa-

tion is derived from two surveys or from repeated sampling of the same population. The

multivariate approach adopted allows the variability in the auxiliary information x to be

incorporated into the mean squared error of the estimates. In Section 2, we define the

basic estimator and derive its mean squared error under the assumed multivariate mixed

effects model. Section 3 gives a second-order asymptotic approximation to the MSE when

fixed effects and covariance components are estimated from the data. Section 4 presents

computational issues, and a simulation study is given in Section 5. Concluding comments

are given in Section 6. All proofs are in the Appendix.

2 The model and estimator

2.1 Best Linear Unbiased Prediction

Suppose there are a total of t small areas; area i has Ni population units. Let yij denote

the characteristic of interest for the jth unit in area i, and let xij = (xij1, · · · , xijk)T denote

a vector of other characteristics for unit j of area i. For sampling on two occasions, x would

represent measurements at time 1, and y would represent a measurement at time 2; with

multiple surveys, x would be measured in one survey, and y in the other.

In area i, both x and y are measured on the nxy
i units in Sixy; x (but not y) is measured

on the nx
i units in the set Six; y (but not x) is measured on the ny

i units in the set Siy.

If unit (ij) in the population is included in both samples, m = k + 1 measurements are

recorded.

We use a multivariate mixed model to describe the relationship between x, y, and

covariates. In the following, Ij is the j × j identity matrix, 1j is a j-vector of ones, δj

is the m-vector with 1 in position j and zeroes elsewhere,
⊕

represents direct sum, and⊗
represents Kronecker product. To simplify expression of results, we assume that the

multivariate response vector ui is arranged with all observations from Sixy first, followed

4



by those from Six and Siy, so

uT
i = [xT

i1, yi1, . . . ,xT
i,nxy

i
, yi,nxy

i
,xT

i,nxy
i +1, . . . ,x

T
i,nxy

i +nx
i
, yi,nxy

i +nx
i +1, . . . , yi,nxy

i +nx
i +ny

i
].

In the multivariate mixed model,

u = Aµ + Zv + e (1)

where uT = (uT
1 · · ·uT

t ), µ is a vector of fixed effects parameters, A and Z are known

matrices, and v = (vT
1 · · ·vT

t ) and e are independent random vectors with mean 0 and

respective covariance matrices G and R. We assume that observations in different small

areas are independent so that R = Cov (e) =
⊕t

i=1 Ri and G = Cov (v) =
⊕t

i=1 Gi. The

overall covariance matrix of u is

V = Cov (u) = R + ZGZT .

Since we are interested in estimating means for all small areas, including those for

which either x or y is not measured, we take vi to be a random m-vector of all the random

effects for area i, even if either x or y is not measured in the area. Under this representation,

Z =
⊕t

i=1 Zi, where

Zi =


1nxy

i

⊗
Im

1nx
i

⊗
(Ik 0k)

1ny
i

⊗
(0T

k 1)


For simplicity of presentation, we take µ to be the m-vector of fixed effects means,

partitioned as µT = [µT
x µy]. Then AT = [ZT

1 ZT
2 . . . ZT

t ]. However, all results in this paper

are easily extended to the case where µ is a general vector of parameters, and A is a matrix

of fixed effects covariates. In this way information from a census or from administrative

records may be incorporated into the small area estimates through regression.

We assume Gi = Cov (vi) = Σv for all i and that

Ri = [Inxy
i

⊗
Σe]

⊕
[Inx

i

⊗
Σexx]

⊕
[Iny

i

⊗
Σeyy],

where the matrices Σv and Σe are partitioned as

Σv =

 Σvxx Σvxy

ΣT
vxy Σvyy

 , Σe =

 Σexx Σexy

ΣT
exy Σeyy

 .
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With this assumption of equal variances for the small area means, G = Cov (v) = It
⊗

Σv.

Thus V =
⊕t

i=1 Vi, where

Vi = Cov (ui) = Ri + ZiΣvZT
i . (2)

The matrices Σv and Σe are assumed positive definite, and may be written as functions

of a vector of variances and covariances denoted by θ. Note that if there is no auxiliary

information (that is, nxy
i = nx

i = 0), the model and assumption reduce to those in Battese

et al. (1988).

Under this model, the vector of means for small area i is µi = µ + vi. Theorem 1

below gives the best linear unbiased predictor (BLUP) of µi under the model in (1). In the

following, let

Σ∗
e =

 Σexx 0

0 Σeyy

 , (3)

n∗i =

 nx
i I 0

0 ny
i

 , (4)

Ei = ZT
i R−1

i Zi = nxy
i Σ−1

e + n∗i (Σ
∗
e)
−1, (5)

and

Di = (Σ−1
v + Ei)−1. (6)

Also, for nxy
i , nx

i , or ny
i nonzero, define

ūixy =
1

nxy
i

nxy
i∑

j=1

 xij

yij

 , x̄ix =
1
nx

i

nxy
i +nx

i∑
j=nxy

i +1

xij , ȳiy =
1
ny

i

nxy
i +nx

i +ny
i∑

j=nxy
i +nx

i +1

yij , ū∗i =

 x̄ix

ȳiy


Theorem 1 Assume θ and µ are known, and that Σv and Σe are positive definite. Then

the BLUP of µi under the multivariate mixed model in (1) is

µ̃i = µ + nxy
i DiΣ−1

e (ūixy − µ) + Din∗i (Σ
∗
e)
−1(ū∗i − µ). (7)

In addition,

MSE [µ̃i] = Di. (8)
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Using (7), the small area estimate for the mean of response y in area i is µ̃iy = δT
mµ̃i.

The mean squared error of µ̃iy is Diyy, the (m,m) entry of Di.

Two special cases of Theorem 1 are of interest. First, suppose that both x and y are

measured on every sampled unit in area i, so that nx
i = ny

i = 0. This would happen, for

example, if x is the characteristic of interest at time 1, y is the same characteristic at time

2, and the same units are included in the sample for each occasion.

Corollary 1 Suppose the conditions of Theorem 1 hold, and that nx
i = ny

i = 0. Then

µ̃i = µ + DiEi(ūixy − µ)

In this special case, our estimator reduces to the multivariate BLUP given in Datta et al.

(1999).

In the second special case, suppose that y is not measured in area i, so that estimation

of µiy depends entirely on the auxiliary information.

Corollary 2 Suppose the conditions of Theorem 1 hold, and that nxy
i = ny

i = 0. Let

Ex
i = nx

i Σ
−1
exx and Dx

i = (Σ−1
vxx + Ex

i )−1. Then

Di = Σv

 Σ−1
vxxD

x
i −Σ−1

vxxD
x
i E

x
i Σvxy

0 1


and

µ̃i = µ +

 Ik

ΣT
vxyΣ

−1
vxx

Dx
i E

x
i (x̄ix − µx).

When nxy
i = ny

i = 0, µix is estimated by the multivariate BLUP µ̃ix = µx+Dx
i E

x
i (x̄ix−µx)

from Corollary 1, calculated assuming only data from the x’s are present. The BLUP of

µiy when nxy
i = ny

i = 0 is µ̃iy = µy + ΣT
vxyΣ

−1
vxx(µ̃ix − µx).

2.2 Relative Efficiency

We next consider the efficiency of µ̃iy relative to the estimator that does not use auxiliary

information from another survey. If the information in x is not used, the univariate small

area estimate of µiy under the model in (1) is

µ̃univ
iy = µy + [Σ−1

vyy + (nxy
i + ny

i )Σ
−1
eyy]

−1Σ−1
eyy{n

xy
i [ūixy]m + ny

i ȳiy − (nxy
i + ny

i )µy}
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with mean squared error

MSE [µ̃univ
iy ] = [Σ−1

vyy + (nxy
i + ny

i )Σ
−1
eyy]

−1 =
ΣvyyΣeyy

Σeyy + (nxy
i + ny

i )Σvyy
.

Let ρ2
v = ΣT

vxyΣ
−1
vxxΣvxyΣ−1

vyy and ρ2
e = ΣT

exyΣ
−1
exxΣexyΣ−1

eyy. Also define c = Σ−1
vyyΣ

−1
vxxΣvxy,

d = Σ−1
eyyΣ

−1
exxΣexy, h = (1− ρ2

v)
−1c + nxy

i (1− ρ2
e)
−1d, and

M = Σ−1
vxx + (1− ρ2

v)
−1cΣvyycT + (nxy

i + nx
i )Σ−1

exx + nxy
i (1− ρ2

e)
−1dΣeyydT .

Theorem 2 gives a simplified expression for MSE [µ̃iy] = Diyy.

Theorem 2 Suppose the conditions of Theorem 1 hold, and that ρ2
v < 1 and ρ2

e < 1. Then

Diyy = [(1− ρ2
v)
−1Σ−1

vyy + ny
i Σ

−1
eyy + nxy

i (1− ρ2
e)
−1Σ−1

eyy − hTM−1h]−1. (9)

The multivariate estimator is always at least as efficient as the univariate estimator;

the gain in efficiency is given in the following corollary.

Corollary 3 Suppose that the conditions of Theorem 2 hold. Let Q be an orthogonal matrix

and Λ a diagonal matrix such that Σ−1/2
vxx ΣexxΣ

−1/2
vxx = QTΛQ, and let P = QΣ1/2

vxx. Then

Diyy = MSE [µ̃univ
iy ]

{
1−Diyy

[
bTC−1b + Σ−1

eyy[n
xy
i + nx

i (1− ρ2
e)]

−1nx
i nxy

i ρ2
e

]}
, (10)

where

b = Pc− [nxy
i + nx

i (1− ρ2
e)]

−1nxy
i ΛPd

and where

C = I−ΣvyyPccTPT + (nxy
i + nx

i )−1
[
Λ− [nxy

i + nx
i (1− ρ2

e)]
−1nxy

i ΣeyyΛPddTPTΛ
]

is positive definite.

The estimator µ̃iy is thus always more efficient than µ̃univ
iy if nx

i (ρ2
v + nxy

i ρ2
e) > 0 or if

ΣeyyΣvxy 6= ΣvyyΣexy. The mean squared errors of the two estimators are equivalent if

Σv = Σe and nx
i = ny

i = 0.

The expression in Corollary 3 simplifies when m = 2: then,

Diyy = MSE [µ̃univ
iy ]

1− Diyy

M(1− ρ2
v)(1− ρ2

e)

nxy
i

(
ρv√

ΣvyyΣexx
− ρe√

ΣvxxΣeyy

)2

+ nx
i

ρ2
v(1− ρ2

e)
ΣvyyΣexx

+ nx
i nxy

i

ρ2
e(1− ρ2

v)
ΣexxΣeyy

]}
.
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3 Estimation when variance components are unknown

In the results of Section 2, we assumed that µ and all multivariate variance components were

known. In practice, these may need to be estimated from the data. To find a second-order

approximation to the MSE of the estimators when the quantities are estimated, we first

examine the case when only µ is unknown. Then the generalized least squares estimator of

µ is

µ̃ = (ATV−1A)−1ATV−1u. (11)

Then, letting

ˆ̃µi = µ̃ + nxy
i DiΣ−1

e (ūixy − µ̃) + Din∗i (Σ
∗
e)
−1(ū∗i − µ̃), (12)

it may be shown directly that

MSE [ˆ̃µi] = Di + (I−DiEi)(ATV−1A)−1(I−EiDi). (13)

The estimator in (12), however, still depends on the vector of variance components θ,

which may be unknown. Let θ̂ be a consistent estimator of θ. Then we may estimate µi by

µ̂i = µ̂ + nxy
i D̂iΣ̂−1

e (ūixy − µ̂) + D̂in∗i (Σ̂
∗
e)
−1(ū∗i − µ̂), (14)

where

µ̂ = (AT V̂−1A)−1AT V̂−1u

and the estimators D̂i, Σ̂e, Σ̂∗
e, and V̂ are formed by substituting θ̂ for θ in the correspond-

ing quantities Di,Σe, Σ∗
e and V.

Theorem 3 gives the second-order asymptotic MSE of µ̂i when method of moment esti-

mators are used to estimate components of Σe and Σv. Datta and Lahiri (2000) discuss the

second-order MSE for the univariate case when maximum likelihood or restricted maximum

likelihood estimates are used; their arguments can be extended to the multivariate situation

in similar fashion.

Theorem 3 Assume θ̂ − θ = Op(t−1) and that the regularity conditions in Section A.1 of

Prasad and Rao (1990) hold. Then the mean squared error of the estimator in (14) is

MSE [µ̂i] = MSE [ ˆ̃µi] + Ti + o(t−1), (15)

9



where Ti is an m × m matrix whose (j, l) element is tr {GjlE[(θ̂ − θ)(θ̂ − θ)T ]}, and the

(q, r) element of Gjl is

[Gjl]qr = δT
j

nxy
i

∂DiΣ−1
e

∂θq
Σe

(
∂DiΣ−1

e

∂θr

)T

+
∂Di(Σ∗

e)
−1

∂θq
n∗i Σ

∗
e

(
∂Di(Σ∗

e)
−1

∂θr

)T

+
∂(DiEi)

∂θq
Σv

(
∂(DiEi)

∂θr

)T
}

δl. (16)

In particular, let θ be the vector consisting of the distinct entries of Σv and Σe. Define

∆ab to be the m × m matrix with ones in positions (a, b) and (b, a) and zeroes elsewhere.

Also define ηab to be 1 if a ∈ {1, . . . , k} and b ∈ {1, . . . , k}, 1 if a = m and b = m, and 0

otherwise. Then for a, b, c, d ∈ {1, . . . ,m},

[Gjl]qr =



δT
j DiΣ−1

v ∆ab(I−Σ−1
v Di)Σ−1

v ∆cdΣ−1
v Diδl, if θq = [Σv]ab,θr = [Σv]cd

δT
j Di

{
nxy

i Σ−1
e ∆abΣ−1

e ∆cdΣ−1
e + ηabηcd(Σ∗

e)
−1∆abn∗i (Σ

∗
e)
−1∆cd(Σ∗

e)
−1

− QiabDiQicd}Diδl, if θq = [Σe]ab,θr = [Σe]cd

−δT
j DiQiabDiΣ−1

v ∆cdΣ−1
v Diδl, if θq = [Σe]ab,θr = [Σv]cd

(17)

where Qiab = nxy
i Σ−1

e ∆abΣ−1
e + n∗i (Σ

∗
e)
−1∆ab(Σ∗

e)
−1ηab.

Equations (14) and (17) require Σexy to be estimated only when nxy
i > 0. For small

areas with nxy
i > 0, the assumption θ̂ − θ = Op(t−1) requires that nxy

i must be positive in

a sufficient number of the small areas to allow Σe to be estimated with sufficient precision.

4 Calculating estimates

Because of the complexity caused by the multivariate structure and the possibility of un-

balanced data, many computational challenges arise when calculating estimates of µ̃i.

First consider the case when Σe and Σv are known. We do not recommend using

the formulas in (7) or (14) for estimation because they may be numerically unstable and

computationally inefficient. If Σv is close to being singular, then the formula in (6) for Di

may lead to inaccuracies in computation. Instead, write Σv = UUT , where U is upper

triangular. Then, writing Di as Di = U[I + UTEiU]−1UT does not require inversion of

Σv.
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If nx
i = ny

i = 0 for each i, the computations may be further simplified. In that case,

write UTΣ−1
e U = PΛPT where P is orthogonal and Λ is the diagonal matrix of eigenvalues.

Then Di = UP[I + nxy
i Λ]−1PTUT ; this form reduces the computations from t + 2 matrix

inversions to one inversion, one Cholesky decomposition, and one spectral decomposition.

Computing Di is more involved for the general case, but the following may be used to

improve numerical stability. Write Σe 0

0 Σ∗
e

 = TTT ,

for T upper triangular. Then

Ei =
[ √

nxy
i Im

√
n∗i

]
T−TT−1


√

nxy
i Im√
n∗i


and

Di = U


[
UT

( √
nxy

i Im
√

n∗i

)
T−T , I

] 
T−1


√

nxy
i Im√
n∗i

U

I




−1

UT

The QR decomposition may be employed to perform the required matrix inversion.

A number of methods are available for estimating Σe and Σv. If nx
i = ny

i = 0 for all i,

then nxy
i = ni and the method of moments estimators are:

Σ̂e =
1

n− t

t∑
i=1

ni∑
j=1

(uij − ū)(uij − ū)T

and

Σ̂v =
[
n−

t∑
i=1

n2
i /n

][ t∑
i=1

ni(ūi − ū)(ūi − ū)T − (t− 1)Σ̂e

]
.

Anderson et al. (1986) and Remadi and Amemiya (1994) discuss properties of maxi-

mum likelihood (ML) and restricted maximum likelihood (REML) estimators for multivari-

ate components of variance for the balanced case (here, when nx
i = ny

i = 0 and nxy
i = nxy

j

for all i and j).

Properties of estimators for the covariance components in the general unbalanced case

follow from the general mixed model discussed in Pinheiro and Bates (2000); these are the
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subject of a forthcoming paper. The package NLME (Pinheiro and Bates, 2000) for R and

S-PLUS can be adapted to estimate Σe and Σv from the data using ML or REML, and

to calculate the BLUPs for the small areas. S-PLUS code for small area estimation using

NLME may be obtained from the authors.

5 Simulation results

To study the small sample efficiency of the estimators, we performed a simulation study

with m = 2. A factorial design was employed, with factors

1. t: 10 or 20

2. Sample sizes (replicated if t = 20):

(a) nxy = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10), nx = 0, ny = 0

(b) nxy = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), nx = (9, 8, 7, 6, 5, 4, 3, 2, 1, 0), ny = 0

(c) nxy = (0, 0, 0, 0, 5, 5, 5, 8, 8, 8), nx = (10, 8, 6, 4, 5, 3, 1, 2, 1, 0), ny = (0, 2, 4, 6, 0, 2, 4, 0, 1, 2)

(d) nxy = (5, 4, 3, 2, 1, 0, 3, 2, 1, 0), nx = (0, 1, 2, 3, 4, 5, 1, 2, 2, 3), ny = (0, 0, 0, 0, 0, 0, 1, 1, 2, 2)

3. Σv and Σe: A=

 1 0

0 1

 , B=

 1 .3

.3 1

 , C=

 1 .9

.9 1

 , D=

 1 −.5

−.5 1

 ,

E=

 1 .6

.6 4

 , F=

 4 .6

.6 1

 , G=

 1 1.8

1.8 4

 , H=

 4 1.8

1.8 1

 .

Each simulation was performed with 1000 iterations. Restricted maximum likelihood

was used to estimate Σe and Σv, using NLME (Pinheiro and Bates, 2000). All computations

were performed in S-PLUS 2000 on a PC.

Selected results are given in Tables 1–6 for the four designs. Table 1 gives results for

the balanced design (a). As expected, when Σv = Σe, the estimator from (7) has empirical

MSE similar to that of the corresponding univariate estimator, but the estimator from

(14) has greater empirical MSE because of the additional variability due to estimating all

components of Σv and Σe. As in Datta et al. (1999), the greatest gains in efficiency are

achieved when the correlations ρv and ρe have opposite signs.

12



The biases of all estimators are negligible and hence not reported. In every simulation,

the empirical MSE of the estimator (7) is within 0.01 of the theoretical value Diyy; Diyy is

consequently not reported in Tables 2–6.

Tables 2–6 give the simulation results for the three unbalanced designs. Not surpris-

ingly, they show that the gains in efficiency are greater for each covariance structure when

nx
i is larger. Gains in efficiency are relatively modest when nx

i = 0, except in the some-

what unrealistic case with Σexy and Σvxy have opposite signs. When nx
i is large and ρ2

v is

large, however, the estimator developed in this paper greatly improves the accuracy over

the univariate estimator. This is true regardless of the values in Σe.

6 Discussion

The results in this paper allow use of auxiliary information from either the same survey or

a different survey to improve estimation in small areas. The estimator and its derived mean

squared error account for the error in the auxiliary information.

For the case of sampling on two occasions with only partially overlapping information,

such as occurs with a rotating panel survey, we would expect that ρe and ρv would both be

large and positive. In this situation, we expect the greatest improvement over the univariate

estimator when a large fraction of the sample is rotated out between the two time periods.

When using this estimator with multiple surveys, in most cases it will not be necessary

to match sample observations between the two surveys. Even when the survey designs

share the same primary sampling units, it is unlikely that the same persons are included

in the surveys. Thus, it is overwhelmingly probable that in most small areas, nxy
i = 0.

Consequently, the estimator in (7) will involve Σv and Σ∗
e but not Σexy. The vector Σexy

is the only quantity, however, whose estimation requires that units in the two surveys be

matched. The matrix Σ∗
e can be estimated from the two separate surveys, and Σv can

be estimated provided that the number of small areas that contain observations from both

surveys is sufficiently large.

As long as the nonresponse mechanism is noninformative, missing data are easily han-

dled by the multivariate approach in this paper. Missing values of y may be treated as

13



though the observation is not in Siy; missing values of x do not contribute to the predic-

tion.

The results in this paper were presented for two surveys. They are easily extended to

any number of surveys providing auxiliary information. They are also easily extended to

the situation in which y is a multivariate response.

Appendix: Proofs

Several of the proofs rely on relations among the matrices defined in Section 2. These

relations are given in the following lemmas for easy reference.

Lemma 1 (Binomial Inverse Theorem) Let F and G be nonsingular matrices of dimension

j × j and l × l, respectively, and let the matrices H and L have dimensions j × l and l × j

respectively. Then

(F + HGL)−1 = F−1 − F−1H(G−1 + LF−1H)−1LF−1.

Lemma 2 For Ei and Di defined in (5) and (6),

D−1
i −Ei = Σ−1

v . (18)

EiDi = Im −Σ−1
v Di. (19)

We also use the following lemma for Theorems 1 and 3.

Lemma 3 For Vi, Ri, and Zi defined in Section 2,

V−1
i = R−1

i −R−1
i ZiDiZT

i R−1
i . (20)

In addition,

ZT
i R−1

i =

1T
nxy

i

⊗
Σ−1

e , 1T
nx

i

⊗
(Σ∗

e)
−1

 Ik

0

 , 1T
ny

i

⊗
(Σ∗

e)
−1

 0k

1


 (21)

Let mT
i = [mi1, mi2, . . . mit] be the m× (tm) matrix with mii = Im and all other entries

0. Then

mT
i GZTV−1 = δT

i

⊗
Im

⊗
ΣvZT

i V−1
i = δT

i

⊗
Im

⊗
DiZT

i R−1
i . (22)

14



Proof of Lemma 3: Equation (20) follows from Lemma 1. Equation (22) follows from

direct calculation and (19), noting that

ΣvZT
i V−1

i = ΣvZT
i (R−1

i −R−1
i ZiDiZT

i R−1
i ) = Σv(Im −EiDi)ZT

i R−1
i = DiZT

i R−1
i .

Proof of Theorem 1: From Henderson (1975), the BLUP for µi is

µ̃i = µ + mT
i GZTV−1[u−Aµ].

Equation (22) implies that

mT
i GZTV−1[u−Aµ] = DiZT

i R−1
i [ui −Aiµ].

Result (7) is then proven by noting that

ZT
i R−1

i [ui −Aiµ] =
nxy

i∑
j=1

Σ−1
e [uij −µ] +

nxy
i +nx

i∑
j=nxy

i +1

Σ−1
exx[xij −µx] +

nxy
i +nx

i +ny
i∑

j=nxy
i +nx

i +1

Σ−1
eyy[yij − µy].

To prove (8), note that

MSE [µ̃i] = V [µ̃i − vi]

= V

(DiEi − I)vi + Di

nxy
i Σ−1

e ēixy + n∗i (Σ
∗
e)
−1

 ēix

ēiy





= (DiEi − I)Σv(EiDi − I) + Di

{
nxy

i Σ−1
e + n∗i (Σ

∗
e)
−1
}

Di

= DiΣ−1
v Di + DiEiDi

= Di.

The last equalities follow from (18) and (19).

Proof of Theorem 2:

Inversion of the partitioned matrices gives

Σ−1
v =

 Σ−1
vxx + (1− ρ2

v)
−1ΣvyyccT −(1− ρ2

v)
−1c

−(1− ρ2
v)
−1cT (1− ρ2

v)
−1Σ−1

vyy


and

Ei =

 (nxy
i + nx

i )Σ−1
exx + nxy

i (1− ρ2
e)
−1ΣeyyddT −nxy

i (1− ρ2
e)
−1d

−nxy
i (1− ρ2

e)
−1dT [ny

i + nxy
i (1− ρ2

e)
−1]Σ−1

eyy

 .
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Consequently,

D−1
i = Σ−1

v + Ei =

 M −h

−hT (1− ρ2
v)
−1Σ−1

vyy + [ny
i + nxy

i (1− ρ2
e)
−1]Σ−1

eyy


and equation (9) follows by direct calculation.

Proof of Corollary 3:

By construction, PTP = Σvxx and PTΛP = Σexx, so

M = P−1(A + Λ−1/2BΛ−1/2)P−T ,

where

A = I + (1− ρ2
v)
−1PcΣvyycTPT

and

B = (nxy
i + nx

i )I + nxy
i (1− ρ2

e)
−1Λ1/2PdΣeyydTPTΛ1/2.

Since ρ2
v = ΣvyycTΣvxxc and ρ2

e = ΣeyydTΣexxd, it follows that

A−1 = I−ΣvyyPccTPT

and

B−1 = (nxy
i + nx

i )−1
{
I− nxy

i Σeyy[n
xy
i + nx

i (1− ρ2
e)]

−1Λ1/2PdΣeyydTPTΛ1/2
}

.

Thus cTPTA−1 = (1−ρ2
v)c

TPT and dTPTΛ1/2B−1 = [nxy
i +nx

i (1−ρ2
e)]

−1(1−ρ2
e)d

TPTΛ1/2.

Consequently, using Lemma 1,

hTM−1h = hTPT (A + Λ−1/2BΛ−1/2)−1Ph

= (1− ρ2
v)
−2cTPT (A−1 −A−1C−1A−1)Pc

+ (nxy
i )2(1− ρ2

e)
−2dTPTΛ1/2(B−1 −B−1Λ1/2C−1Λ1/2B−1)Λ1/2Pd

+ 2nxy
i (1− ρ2

v)
−1(1− ρ2

e)
−1cTPT (A−1 −A−1C−1A−1)PD

= (1− ρ2
v)
−1Σ−1

vyyρ
2
v − cTPTC−1Pc

+
{
Σeyy[n

xy
i + nx

i (1− ρ2
e)](1− ρ2

e)
}−1

(nxy
i )2ρ2

e

− [nxy
i + nx

i (1− ρ2
e)]

−2(nxy
i )2dTPTΛC−1ΛPd

+2 [nxy
i + nx

i (1− ρ2
e)]

−1nxy
i cTPTC−1ΛPd

= (1− ρ2
v)
−1Σ−1

vyyρ
2
v +

{
Σeyy[n

xy
i + nx

i (1− ρ2
e)](1− ρ2

e)
}−1

(nxy
i )2ρ2

e − bTC−1b.
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After algebraic manipulation, the mean squared error of the multivariate estimator in

(9) may be written as

Diyy = MSE [µ̃univ
iy ]

{
1−Diyy

[
ρ2

v

1− ρ2
v

Σ−1
vyy + nxy

i

ρ2
e

1− ρ2
e

Σ−1
eyy − hTM−1h

]}
.

Substituting in the above expression for hTM−1h and simplifying completes the proof of

the corollary.

Proof of Theorem 3: Write

µ̂i = t(θ̂,u) = [t1(θ̂,u), . . . , tm(θ̂,u)]T

and suppose that θ is a p-vector. As in Kackar and Harville (1984), Taylor’s theorem yields

t(θ̂,u) = t(θ,u) + dT (θ)(θ̂ − θ) + op(t−1/2),

where

d(θ) =
[
∂t1(θ,u)

∂θ
, . . . ,

∂tp(θ,u)
∂θ

]
.

Then by the arguments in Theorem A.1 in Prasad and Rao (1990),

E
[
dT (θ)(θ̂ − θ)(θ̂ − θ)Td(θ)

]
kl

= tr
[
∇ikV∇T

ilCov (θ̂)
]
,

where

∇ik = col1≤j≤p δT
k

∂[mT
i GZTV−1]

∂θj
= col1≤j≤p δT

k

∂[δT
i

⊗
Im
⊗

DiZT
i R−1

i ]
∂θj

for mi defined in Lemma 3. Now, using (21),

∂DiZT
i R−1

i

∂θq
=

1T
nxy

i

⊗ 1
nxy

i

∂DiΣ−1
e

∂θq
, 1T

nx
i

⊗ 1
nx

i

∂Di(Σ∗
e)
−1

∂θq

 Ik

0

 , 1T
ny

i

⊗ 1
ny

i

∂Di(Σ∗
e)
−1

∂θq

 0

1


 .

Using (2), and noting that(
∂DiZT

i R−1
i

∂θq

)
Zi = nxy

i

∂DiΣ−1
e

∂θq
+

∂Din∗i (Σ
∗
e)
−1

∂θq
=

∂DiEi

∂θq
,

we have that

∂DiZT
i R−1

i

∂θq
Vi

(
∂DiZT

i R−1
i

∂θr

)T

=
∂DiZT

i R−1
i

∂θq
(Ri + ZiΣvZT

i )

(
∂DiZT

i R−1
i

∂θr

)T
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= nxy
i

∂DiΣ−1
e

∂θq
Σe

(
∂DiΣ−1

e

∂θr

)T

+ nx
i

∂Di(Σ∗
e)
−1

∂θq

 Σexx 0

0 0

(∂Di(Σ∗
e)
−1

∂θr

)T

+ ny
i

∂Di(Σ∗
e)
−1

∂θq

 0 0

0 Σeyy

(∂Di(Σ∗
e)
−1

∂θr

)T

+
∂DiEi

∂θq
Σv

(
∂DiEi

∂θr

)T

,

which is equivalent to the expression in (16).

The specific entries in Gjl are obtained using the following results:

∂DiΣ−1
e

∂[Σv]ab
= DiΣ−1

v ∆abΣ−1
v DiΣ−1

e .

∂Di(Σ∗
e)
−1

∂[Σv]ab
= DiΣ−1

v ∆abΣ−1
v Di(Σ∗

e)
−1.

∂(DiEi)
∂[Σv]ab

= DiΣ−1
v ∆abΣ−1

v DiEi

∂DiΣ−1
e

∂[Σe]ab
= Di

[
nxy

i Σ−1
e ∆abΣ−1

e Di + n∗i (Σ
∗
e)
−1∆ab(Σ∗

e)
−1Diηab −Σ−1

e ∆ab

]
Σ−1

e .

∂Di(Σ∗
e)
−1

∂[Σe]ab
= Di

[
nxy

i Σ−1
e ∆abΣ−1

e Di + n∗i (Σ
∗
e)
−1∆ab(Σ∗

e)
−1Diηab − (Σ∗

e)
−1∆abηab

]
(Σ∗

e)
−1

∂(DiEi)
∂[Σe]ab

= Di

[
nxy

i Σ−1
e ∆abΣ−1

e + n∗i (Σ
∗
e)
−1∆ab(Σ∗

e)
−1ηab

]
(DiEi − I).
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Table 1: Simulation results for the balanced design with nxy
i = 10 for each small area. Each

entry of the table is the Monte Carlo MSE of the small area mean.

t Σv Σe MK ME UK UE TK

20 B B 0.0901 0.0922 0.0901 0.0915 0.0909

20 C B 0.0817 0.0858 0.0918 0.0935 0.0814

20 C D 0.0543 0.0631 0.0903 0.0916 0.0544

20 C A 0.0717 0.0769 0.0901 0.0914 0.0725

20 D A 0.0891 0.0916 0.0917 0.0930 0.0885

20 E A 0.0980 0.0985 0.0981 0.0985 0.0973

20 G A 0.0926 0.0949 0.0985 0.0989 0.0913

20 F A 0.0904 0.0932 0.0909 0.0928 0.0901

20 H A 0.0671 0.0746 0.0903 0.0919 0.0677

20 H B 0.0725 0.0789 0.0896 0.0914 0.0733

NOTE: MK = multivariate estimates, with Σv and Σe known; ME = multivariate esti-

mates, with Σv and Σe estimated from the data; UK = univariate estimates, with variance

components known; UE = univariate estimates, with variance components estimated from

the data; TK = theoretical multivariate variance with Σv and Σe known (TK = Diyy).
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Table 2: Simulation results for Design (b). MK, ME, UK, and UE are as in Table 1.

nxy
i 1 2 3 4 5 6 7 8 9 10

nx
i 9 8 7 6 5 4 3 2 1 0

ny
i 0 0 0 0 0 0 0 0 0 0

t = 10 MK .21 .17 .17 .13 .12 .12 .11 .10 .09 .08

Σv: C ME .29 .23 .22 .17 .15 .14 .13 .12 .10 .09

Σe: B UK .48 .32 .26 .19 .17 .15 .13 .11 .10 .09

UE .56 .36 .29 .21 .18 .16 .14 .12 .11 .09

t = 20 MK .21 .17 .16 .14 .12 .11 .10 .10 .09 .08

Σv: C ME .24 .20 .18 .16 .13 .13 .11 .11 .09 .09

Σe: B UK .47 .33 .24 .21 .16 .14 .12 .11 .10 .09

UE .51 .35 .25 .22 .17 .15 .13 .11 .10 .09

t = 20 MK .17 .14 .11 .11 .11 .10 .10 .10 .09 .09

Σv: C ME .18 .15 .12 .11 .11 .11 .10 .10 .09 .10

Σe: C UK .49 .34 .24 .20 .17 .15 .13 .11 .10 .09

UE .53 .36 .25 .21 .18 .15 .13 .12 .10 .10

t = 20 MK .18 .14 .12 .10 .08 .08 .07 .06 .06 .05

Σv: C ME .23 .18 .14 .12 .10 .09 .08 .08 .07 .06

Σe: D UK .47 .32 .25 .20 .17 .15 .12 .11 .10 .09

UE .51 .35 .27 .21 .18 .16 .12 .11 .10 .10

t = 10 MK .18 .14 .11 .10 .08 .08 .07 .07 .06 .06

Σv: C ME .28 .21 .15 .13 .11 .10 .09 .09 .08 .07

Σe: D UK .51 .32 .25 .20 .16 .15 .13 .12 .10 .10

UE .62 .38 .26 .23 .18 .16 .13 .12 .10 .10

t = 20 MK .46 .32 .23 .19 .17 .14 .12 .11 .10 .09

Σv: B ME .51 .35 .25 .20 .18 .15 .12 .12 .11 .09

Σe: B UK .48 .34 .24 .20 .17 .15 .12 .11 .10 .09

UE .53 .36 .26 .21 .18 .15 .12 .12 .10 .09
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Table 3: Simulation results for Design (b), continued. MK, ME, UK, and UE are as in

Table 1.

nxy
i 1 2 3 4 5 6 7 8 9 10

nx
i 9 8 7 6 5 4 3 2 1 0

ny
i 0 0 0 0 0 0 0 0 0 0

t = 10 MK .53 .34 .24 .20 .16 .14 .13 .12 .10 .09

Σv: G ME .64 .41 .28 .22 .18 .15 .14 .13 .11 .09

Σe: A UK .77 .43 .29 .22 .19 .16 .14 .13 .11 .09

UE .81 .45 .31 .23 .18 .16 .15 .13 .11 .09

t = 10 MK .77 .42 .32 .23 .19 .17 .15 .13 .11 .10

Σv: E ME .87 .46 .35 .24 .20 .18 .16 .14 .11 .11

Σe: A UK .80 .42 .32 .23 .19 .17 .15 .13 .11 .10

UE .85 .44 .33 .24 .20 .17 .15 .13 .11 .11

t = 10 MK .49 .33 .26 .20 .17 .14 .12 .12 .10 .09

Σv: F ME .62 .44 .31 .24 .19 .16 .13 .13 .11 .10

Σe: A UK .52 .34 .27 .20 .17 .14 .12 .12 .10 .09

UE .61 .40 .29 .23 .18 .15 .13 .13 .11 .10

t = 20 MK .21 .14 .12 .10 .10 .09 .09 .08 .09 .08

Σv: A ME .23 .15 .12 .11 .11 .10 .09 .09 .09 .09

Σe: C UK .48 .34 .24 .20 .17 .14 .12 .11 .10 .09

UE .51 .36 .25 .21 .17 .14 .12 .11 .10 .09
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Table 4: Simulation results for Design (c). MK, ME, UK, and UE are as in Table 1.

nxy
i 0 0 0 0 5 5 5 8 8 8

nx
i 10 8 6 4 5 3 1 2 1 0

ny
i 0 2 4 6 0 2 4 0 1 2

t = 10 MK .24 .17 .14 .12 .12 .10 .09 .09 .09 .08

Σv: C ME .38 .24 .18 .14 .15 .12 .10 .11 .10 .09

Σe: B UK .91 .33 .20 .15 .17 .12 .10 .12 .10 .09

UE 1.07 .38 .23 .16 .18 .13 .11 .12 .11 .10

t = 10 MK .89 .34 .21 .14 .16 .11 .10 .10 .09 .09

Σv: B ME 1.21 .41 .24 .15 .18 .13 .11 .11 .10 .10

Σe: B UK .97 .34 .21 .14 .17 .11 .10 .10 .09 .09

UE 1.12 .39 .23 .15 .18 .12 .11 .11 .09 .10

t = 10 MK .25 .17 .14 .12 .08 .07 .06 .06 .06 .05

Σv: C ME .41 .24 .17 .14 .11 .10 .08 .08 .07 .07

Σe: D UK .90 .31 .20 .15 .16 .12 .09 .11 .10 .09

UE 1.02 .36 .22 .16 .16 .13 .10 .12 .10 .09

t = 10 MK 3.81 .44 .24 .16 .18 .14 .11 .12 .11 .10

Σv: E ME 4.89 .45 .25 .16 .19 .15 .12 .12 .11 .11

Σe: B UK 4.10 .44 .24 .16 .18 .14 .12 .12 .11 .10

UE 4.57 .45 .25 .16 .19 .14 .12 .12 .11 .10

t = 10 MK 1.03 .36 .20 .15 .17 .12 .10 .11 .10 .09

Σv: G ME 1.46 .44 .22 .16 .19 .13 .11 .12 .11 .10

Σe: A UK 3.82 .47 .23 .17 .19 .13 .11 .12 .11 .10

UE 4.31 .50 .23 .17 .19 .13 .11 .12 .11 .10

t = 10 MK .20 .15 .12 .10 .10 .09 .08 .07 .08 .07

Σv: H ME .29 .22 .17 .13 .14 .11 .10 .10 .10 .09

Σe: A UK .91 .34 .21 .15 .16 .12 .10 .10 .11 .09

UE 1.04 .38 .23 .17 .18 .13 .11 .11 .11 .10
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Table 5: Simulation results for Design (d). MK, ME, UK, and UE are as in Table 1.

nxy
i 5 4 3 2 1 0 3 2 1 0

nx
i 0 1 2 3 4 5 1 2 2 3

ny
i 0 0 0 0 0 0 1 1 2 2

t = 10 MK .14 .17 .19 .22 .25 .32 .19 .19 .18 .21

Σv: C ME .17 .21 .25 .32 .41 .50 .22 .24 .23 .27

Σe: B UK .16 .21 .26 .34 .49 1.00 .23 .26 .25 .33

UE .18 .24 .31 .40 .60 1.20 .25 .28 .30 .42

t = 20 MK .09 .09 .12 .15 .21 .32 .10 .13 .16 .22

Σv: C ME .11 .12 .16 .20 .28 .43 .13 .16 .19 .26

Σe: D UK .17 .20 .25 .36 .51 1.02 .19 .24 .26 .33

UE .18 .22 .27 .40 .56 1.12 .21 .26 .28 .37

t = 20 MK .14 .16 .18 .21 .26 .32 .16 .19 .18 .22

Σv: C ME .16 .19 .22 .26 .31 .42 .18 .22 .21 .26

Σe: B UK .16 .20 .26 .34 .49 1.06 .20 .25 .24 .33

UE .18 .21 .27 .37 .54 1.14 .21 .28 .26 .38

t = 20 MK .17 .17 .18 .20 .24 .32 .16 .18 .19 .22

Σv: C ME .18 .18 .20 .22 .27 .37 .17 .19 .21 .24

Σe: C UK .17 .20 .25 .33 .53 .99 .18 .25 .26 .32

UE .18 .21 .27 .38 .59 1.07 .20 .27 .28 .36

25



Table 6: Simulation results for Design (d), continued. MK, ME, UK, and UE are as in

Table 1.

nxy
i 5 4 3 2 1 0 3 2 1 0

nx
i 0 1 2 3 4 5 1 2 2 3

ny
i 0 0 0 0 0 0 1 1 2 2

t = 20 MK .13 .15 .20 .26 .41 1.29 .16 .21 .23 .39

Σv: G ME .15 .17 .23 .30 .50 1.54 .18 .24 .24 .42

Σe: D UK .18 .22 .32 .44 .78 3.98 .24 .31 .31 .46

UE .19 .23 .32 .45 .81 4.26 .24 .32 .31 .47

t = 20 MK .19 .23 .27 .38 .60 1.33 .22 .27 .29 .39

Σv: G ME .20 .24 .29 .41 .68 1.54 .23 .29 .30 .41

Σe: B UK .19 .24 .30 .45 .80 4.10 .23 .29 .31 .45

UE .19 .25 .30 .46 .84 4.36 .23 .30 .32 .45

t = 20 MK .08 .09 .11 .13 .16 .23 .10 .12 .13 .16

Σv: H ME .12 .12 .15 .19 .22 .31 .14 .16 .17 .23

Σe: D UK .17 .19 .25 .35 .51 .99 .20 .24 .25 .34

UE .18 .21 .27 .39 .56 1.07 .22 .26 .27 .38

t = 20 MK .12 .13 .14 .17 .20 .23 .13 .14 .15 .16

Σv: H ME .16 .16 .18 .22 .26 .30 .17 .18 .19 .20

Σe: B UK .18 .20 .24 .35 .54 .98 .20 .25 .25 .33

UE .19 .21 .26 .38 .62 1.05 .21 .27 .28 .37

t = 20 MK .17 .21 .26 .33 .48 .93 .20 .24 .24 .32

Σv: B ME .18 .23 .28 .38 .58 1.09 .22 .27 .27 .36

Σe: B UK .17 .21 .26 .36 .50 .99 .20 .25 .24 .33

UE .18 .22 .28 .39 .56 1.07 .21 .26 .27 .36
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