Solutions to Midterm Exam II
 Part B

Q17.
$\mathrm{n}=10$, sample mean $\mathrm{X}=30: 4$
$3 / 4=7$:
95\% Confidence Interval for ${ }^{1}$ is $X^{.} z^{\alpha 3 / 4}{ }^{p} \bar{n}$;
which yields ($26.06,34.74$) as the answer.
Note that for 95% confidence interval the value of Z^{α} is 1.96 .
Q18
a). $\mathrm{H}_{0}:{ }^{1}=25$ vs $\mathrm{H}_{\mathrm{a}}:{ }^{1}>25$:
b). Z-statistic $=\frac{X_{i}{ }^{1}{ }^{1}=\frac{0}{\bar{n}}}{}$ and its computed value $=\frac{30}{70} \frac{4 i}{} \frac{25}{10}=2: 44$
c). P -value $=\mathrm{P}(\mathrm{Z}>2.44)=$ area under the standard normal curve to the right of $2.44=0.0074$.
d). For ${ }^{\circledR}=0: 05$ (this is because the level of significance is 5%), P -value is smaller than \mathbb{R}^{\circledR}. Hence, we reject H_{0} :
Part A: There were two versions of the exam: Please, see a copy of the exam (Part A) on this web page. The solutions below correspond to this version of the exam. The second version of the exam had same set of questions but in a different order.

Q1 (v1)
Ans: exercise and diet
Q2 (v1)
$P(X, 3)=P(X=3)+P(X=4)=0: 4$. Therefore, ans. $=0.4$
Q3(v1)
$P(X<3)=P(X \cdot 2)=P(X=1)+P(X=2)=0: 6:$ Therfore, ans=0.6
Q4(v1)
The sampling distribution of \bar{X} is normal with mean ${ }^{1}$ and standard deviation, $3 / \frac{p}{=} \bar{n}$:
Therefore,
$P(\bar{X}<8)=P\left(Z<\frac{8 i \%}{0: 1=\frac{1}{5}}\right)=P\left(Z<i \quad{ }_{\overline{5}}\right)=0: 0125$, from standard normal table.
Q5 (v1)
Ans: gets closer and closer to the population mean ${ }^{1}$:
Q6(v1)
$\mathrm{P}(\mathrm{X}$ is a 2,11 , or 12$)=\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=11)+\mathrm{P}(\mathrm{X}=12)=(1 / 36)+(2 / 36)+(1 / 36)=4 / 36$
Ans: $4 / 36$.
Q7(v1)
$P(X$ is atleast 7) $=P(X, 7)=P(X=7)+P(X=8)+P(X=9)+P(X=10)+P(X=$ 11) $+P(X=12)=21=36$:

Ans: 21/36.
Q8(v1)
The sampling distribution of \bar{X} is normal with mean $35 ; 000$ and standard deviation, $5000 \stackrel{p}{=} \overline{4}$:
Therefore,
$\mathrm{P}(\overline{\mathrm{X}}, 40 ; 000)=\mathrm{P}\left(Z, \frac{40 ; 000 \mathrm{i} \frac{33 ; 000}{5 ; 000}}{5000=\overline{4}}\right)=\mathrm{P}(Z, 2)=0: 0228$, from standard normal table.
Ans: 0.0228.
Q9(v1)
Ans : not trustworthy- because the sample is not a random sample from the population of seniors. Q10(v1)
Since, P -value is 0.022 for the test with two-sided alternative. For ${ }^{\circledR}=0: 01$; this P -value will be larger than ${ }_{\circledR}$. Hence, we do not reject $\mathrm{H}_{0}:{ }^{1}=1$ at 1% level of significance. This implies that a 99% confidence interval for ${ }^{1}$ will include the value 1 .

Q11(v1).
Ans: B).
Q12 (v1)
Level of confidence is 99% which gives $z^{\mathbb{\alpha}}=2: 575$ (from standard normal table, as 99% critical value).
$\mathrm{n}=\left(\frac{z^{83} / 4}{m}\right)^{2}=\left(\frac{2: 575 \times 2: 4}{1}\right)^{2}=39$ (after rounding-off to the next integer)
Q13 (v1)
$X=65 ; Z^{\mathbb{x}}=2: 575 ; 3 / 4=2: 4$:Therfore, a 99% confidence interval for ${ }^{1}$ is $X^{" 1} z^{x} p^{3 / 4} \frac{1}{n}$ which yields ($65^{\prime \prime} 3: 09$) as the answer.

Q14(v1)
Ans: B).
Q15(v1)
P-value $=P\left(Z<\frac{9: 8_{j}}{0: 4} \frac{10}{100}\right)=P(Z<i 5)<0: 0002$:
Ans: less than 0.0002
Q16(v1)
Ans: C).

