Example 1 Graph the function

\[f(x) = \begin{cases}
\sqrt{1-x^2} & 0 \leq x < 1 \\
1 & 1 \leq x < 2 \\
2 & x = 2
\end{cases} \]

(a) What are the domain and range of \(f \)?

(b) At what points \(c \), if any, does \(\lim_{x \to c} f(x) \) exists?

(c) At what points does only the left hand limit exists?

(d) At what points does only the right hand limit exists?

Solution:
Note 2 If \(f(x) = g(x) \) when \(x \neq a \), then \(\lim_{x \to a} f(x) = \lim_{x \to a} g(x) \) provided the limit exists.

Example 3 Find \(\lim_{x \to 1} g(x) \) where \(g(x) = \begin{cases} x + 1 & \text{if } x \neq 1 \\ \pi & \text{if } x = 1 \end{cases} \)

Solution:

Theorem 4 If \(f(x) \leq g(x) \) when \(x \) is near \(a \) (except possibly at \(a \)) and the limits of \(f \) and \(g \) both exists as \(x \) approaches \(a \), then

\[
\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)
\]

Theorem 5 (The Sandwich Theorem) If \(f(x) \leq g(x) \leq h(x) \) when \(x \) is near \(a \) (except possibly at \(a \)) and \(\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \Rightarrow \lim_{x \to a} g(x) = L \)

Example 6 Show that \(\lim_{x \to 0} x^2 \sin \left(\frac{1}{x} \right) = 0 \).

Solution:

Example 7 Show that \(\lim_{x \to \infty} \frac{\sin(x)}{x} = 0 \)

Solution:
Note 8 \(\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1 \)

Example 9 *Calculate the following limits*

1. \(\lim_{\theta \to 0} \frac{\tan(\theta)}{\sin(3\theta)} \)
2. \(\lim_{x \to 0} \frac{x^2 - x + \sin(x)}{2x} \)
3. \(\lim_{x \to 0} \frac{\sin(5x)}{\sin(4x)} \)

Solution:
Section 2.6 Limits at Infinity, Asymptotes of Graphs

Definition 10 A line \(x=a \) is a vertical asymptote of the graph of a function \(y=f(x) \) if either
\[
\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty
\]

- For rational functions, that is of the form \(\frac{P(x)}{Q(x)} \)

\[
\lim_{x \to a} \frac{P(x)}{Q(x)} = \pm \infty \quad \text{if} \quad Q(a) = 0 \quad \text{and} \quad (x - a) \quad \text{is not a factor of} \quad P(x)
\]

Example 11 Determine the infinite limit \(\lim_{x \to 2} \frac{x^2-2x}{x^2-4x+4} \)

Solution:

Example 12 Determine the infinite limit \(\lim_{x \to 5} \frac{2x}{(x-5)^3} \)

Solution:

Definition 13 The line \(y=L \) is called a horizontal asymptote of the curve \(y=f(x) \) if either
\[
\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L
\]

Example 14 \(\lim_{x \to \infty} \frac{1}{x} = 0 = \lim_{x \to -\infty} \frac{1}{x} \Rightarrow y=0 \) is the horizontal asymptote of \(f(x) = \frac{1}{x} \)

Theorem 15 If \(r > 0 \) is a real number and if \(x^r \) is defined for all \(x \), then \(\lim_{x \to \infty} \frac{1}{x^r} = 0 \) and \(\lim_{x \to -\infty} \frac{1}{x^r} = 0 \)
Note 16 To find the limit of a rational function at infinity, divide both numerator and denominator by the highest power of x.

Example 17 Find the following limits

1. $\lim_{x \to \infty} \frac{x^3 + 5x}{2x^3 - x^2 + 4}$
2. $\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$
3. $\lim_{x \to \infty} (\sqrt{9x^2 + x} - 3x)$
4. $\lim_{x \to \infty} \frac{x^3 + 2}{3x + 1}$
Note 18 If a function is bounded it does not mean that function will have a horizontal asymptote.

Example 19 \(\lim_{x \to} \sin(x) \) does not exists

Example 20 Find horizontal and vertical asymptote of the curve \(y = \frac{2x^2 + x - 1}{x^2 + x - 2} \)
Section 2.5 Continuity

Like limits we have right and left continuity for a function

Definition 21

- A function f is continuous from the right at a number a if $\lim_{x \to a^+} f(x) = f(a)$.
- A function f is continuous from the left at a number a if $\lim_{x \to a^-} f(x) = f(a)$.
- A function f is continuous at a number a if $\lim_{x \to a} f(x) = f(a)$.

To check if f is continuous at $x = a$

1. Check if f is defined at $x = a$.
2. Check if $\lim_{x \to a} f(x)$ exists.
3. Check if $\lim_{x \to a} f(x) = f(a)$.

Note 22

If f is defined on $[a, b]$ then we say f is continuous at $x = a$ if $\lim_{x \to a^+} f(x) = f(a)$, and we say f is continuous at $x = b$ if $\lim_{x \to b^-} f(x) = f(b)$.

Example 23 Let

$$f(x) = \begin{cases}
 x^2 - 1 & -1 \leq x < 0 \\
 2x & 0 < x < 1 \\
 -2x + 4 & 1 \leq x
\end{cases}$$

Is f continuous at $x = -1, x = 0, x = 1$?

Solution:
Example 24 Is $f(x) = |x|$ continuous at $x=0$?

Solution:

Theorem 25 The following type of functions are continuous at every number in their domains: Polynomials, rational functions, root functions, trigonometric functions, inverse trigonometric functions, exponential functions and logarithmic functions.

Example 26 Find the numbers at which f is discontinuous.

$$f(x) = \begin{cases}
1 + x^2 & \text{if } x \leq 0 \\
2 - x & \text{if } 0 < x \leq 2 \\
(x - 2)^2 & \text{if } x > 2
\end{cases}$$

Solution:

Definition 27 A function is continuous on an interval if it is continuous at every number in the interval.

Example 28 For what values of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases}
 cx^2 + 2x & \text{if } x < 2 \\
x^3 - cx & \text{if } x \geq 2
\end{cases}$$
Theorem 29 If f and g are continuous at a and c is a constant, then the following functions are also continuous at a:

1. $f+g$
2. $f-g$
3. cf
4. fg
5. $\frac{f}{g}$ if $g(a) \neq 0$
6. f^n, n is a positive integer
7. $\sqrt[n]{f}$, n is positive

Theorem 30 If f is continuous at b and $\lim_{x \to a} g(x) = b$ then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b)$$

Example 31 $\lim_{x \to 0} \tan \left(\frac{\pi}{4} \cos (\sin (x^{1/3}))\right)$

Solution:

Theorem 32 If g is continuous at a and f is continuous at $g(a)$ then the composite function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at $x=a$.
Example 33 At what points the function \(f(x) = \sqrt{2x + 3} \) is continuous?

Solution:

Theorem 34 (Intermediate Value Theorem)
Suppose that \(f \) is continuous on the closed interval \([a,b]\) and let \(N \) be any number between \(f(a) \) and \(f(b) \), where \(f(a) \neq f(b) \). Then there exists a number \(c \) in \((a,b)\) such that \(f(c) = N \).

Example 35 Show that there is a root of the equation \(4x^3 - 6x^2 + 3x - 2 = 0 \).

Solution: